Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 63(10): 4557-4565, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38395040

ABSTRACT

The through-space charge transfer thermally activated delayed fluorescence (TSCT-TADF) properties of a series of molecules were characterized and tested theoretically by density functional theory and time-dependent density functional theory. By analyzing the weak interaction of the molecules at the ground state and calculating the transition contribution ratio of the donor, acceptor, and bridge in the excited state, we verified the through-space charge transfer characteristic of these molecules. We designed new molecules on the basis of the reported molecules (non-TADF molecule 1 and TADF molecule 2) to improve the performance. Smaller singlet-triplet energy gaps and larger spin-orbit coupling were obtained in the designed molecules, which is beneficial to obtain higher intersystem crossing and reverse intersystem crossing rates (kRISC). In addition, we calculated the radiation rate and the singlet-triplet reorganization energy, which is used to characterize the nonradiation rate. The comprehensive evaluation of both radiative and nonradiative processes shows that molecules 4 and 6 have the potential to be highly efficient TSCT-TADF materials.

2.
Inorg Chem ; 62(19): 7212-7219, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37139601

ABSTRACT

Developing a photosensitizer with high efficiency and long-term stability for photocatalytic hydrogen evolution is highly desirable yet remains a challenge. Herein, a novel Ir(III) complex-based photosensitizer (Ir3) bearing coumarin and triphenylamine groups is designed. Ir3 exhibits record activity and durability among reported transition metal complexes for photocatalytic hydrogen evolution, with a TON of 198,363 and a duration of 214 h. The excellent photocatalytic performance of Ir3 can be attributed to the synergistic effect of coumarin and triphenylamine, which improves the visible light absorption, charge separation, and electron transfer capacity of photosensitizers. This is an efficient and long-lived Ir(III) photosensitizer constructed on the basis of a synergistic approach, which could provide a new insight for the development of high-performance Ir(III) photosensitizers at the molecular level.

3.
Phys Chem Chem Phys ; 24(43): 26853-26862, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317503

ABSTRACT

The emergence and development of radical luminescent materials is a huge breakthrough toward high-performance organic light-emitting diodes (OLEDs) without spin-statistical limits. Herein, we design a series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) by combining skeleton-engineering and periphery-engineering strategies, and present some insights into how different chemical modifications can modulate the chemical stability and luminescence properties of radicals by quantum chemistry methods. Firstly, through the analysis of the geometric structure changes from the lowest doublet excited state (D1) to the doublet ground state (D0) states, the emission energy differences between the BN orientation isomers are explained, and it is revealed that the radical with a smaller dihedral angle difference can more effectively suppress the geometric relaxation of the excited states and bring a higher emission energy. Meanwhile, a comparison of the excited state properties in different radicals can help us to disclose the luminescence behavior, that is, the enhanced luminescent intensity of the radical is caused by the intensity borrowing between the charge transfer (CT) state and the dark locally excited (LE) state. In addition, an efficient algorithm for calculating the internal conversion rate (kIC) is introduced and implemented, and the differences in kIC values between designed radicals are explained. More specifically, the delocalization of hole and electron wave functions can reduce nonadiabatic coupling matrix elements (NACMEs), thus hindering the non-radiative decay process. Finally, the double-regulation of chemical stability and luminescence properties was realized through the synergistic effect of skeleton-engineering and periphery-engineering, and to screen the excellent doublet emitter (BN-41-MPTTM) theoretically.

4.
Chemistry ; 27(37): 9571-9579, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33786898

ABSTRACT

Quantum mechanical and molecular dynamics simulations have been carried out on a series of anthracene-o-carborane derivatives (ANT-H, ANT-Ph, ANT-Me and ANT-TMS) with rare red-light emission in the solid state. The simulation of the heating process of the crystals and further comparison of the molecular structures and excited-state properties before and after heating help us to disclose the thermochromic behavior, that is, the red-shift emission is caused by elongation of the C1-C2 bond in the carborane moiety after heating. Thus, we believe that the molecular structure in the crystal is severely affected by heating. Transformation of the molecular conformation appears in the ANT-H crystal with increasing temperature. More specifically, the anthracene moiety moves from nearly parallel to the C1-C2 bond to nearly perpendicular, causing the short-wavelength emission to disappear after heating. As for the aggregation-induced emission phenomenon, the structures and photophysical properties were investigated comparatively in both the isolated and crystal states; the results suggested that the energy dissipation in crystal surroundings was greatly reduced through hindering structure relaxation from the excited to the ground state. We expect that discussion of the thermochromic behavior will provide a new analysis perspective for the molecular design of o-carborane derivatives.

5.
Chemphyschem ; 18(7): 755-762, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28094887

ABSTRACT

The case that aggregation has a large influence on the structure and fluorescent properties of 5-(4-(1,2,2-triphenylvinyl)phenyl)thiophene-2-carbaldehyde (P4 TA) is investigated in detail herein by employing quantum mechanics and molecular mechanics. Besides the isolated molecule, the aggregated molecule in water and in the crystalline state was studied by focusing on the comparison of photoelectronic properties, including the geometrical and electronic structures at ground and excited states, emission and internal conversation properties. For the aggregation state, the intermolecular interaction was used to explain the difference in structure, emission color and intensity of different polymorphs. The noticeable contribution from low-frequency region, corresponding to the four phenyl rings twisting vibration, to the Huang-Rhys factor and reorganization energy, as well as the possible potential energy surface crossing between S0 and S1 states for isolated molecules was considered as the reason of its aggregation-induced emission (AIE) performance. Importantly, the aggregation process in water simulated at the same time helps us to have a deeper understanding of the AIE behavior of P4 TA, which also provides another perspective to explore the AIE phenomenon in theory.

6.
Phys Chem Chem Phys ; 19(46): 31227-31235, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29143010

ABSTRACT

The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

7.
J Mater Chem B ; 10(30): 5818-5825, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35876122

ABSTRACT

Organic functional materials have emerged as a promising class of emissive materials with potential application in cancer phototheranostics, whose molecular structures and solid-state packing in the microenvironment play an important role in reactive oxygen species (ROS) generation and the photodynamic therapy (PDT) effect. Clarifying the guidelines to precisely modulate PDT performance from molecular and aggregate levels is desired but remains challenging. In this work, two compounds, TCP-PF6 and TTCP-PF6, with similar skeletons are strategically synthesized, in which a thiophene segment is ingeniously introduced into the molecular backbone of TCP-PF6 to adjust the intrinsic molecular characteristics and packing in the aggregate state. The experimental and theoretical results demonstrate that TTCP-PF6 can form tight packing mode in comparison with TCP-PF6, resulting in efficient cell imaging and enhanced ROS generation ability in vitro and in vivo. The promising features make TTCP-PF6 a superior photosensitizer for PDT treatment against cancer cells by targeting mitochondria. These findings can provide a feasible molecular design for modulating the biological activity and developing photosensitizers with high ROS generation and PDT effect.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Molecular Structure , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Reactive Oxygen Species , Tumor Microenvironment
8.
Dalton Trans ; 46(34): 11491-11502, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28820538

ABSTRACT

Two reported Ir(iii) complexes 1a and 1b containing oxazoline and imidazoline in ancillary ligand, respectively, were investigated by DFT/TD-DFT method. In order to obtain full-color display materials, we designed a group of Ir(iii) complexes 2a-3d based on 1a, which exhibits higher quantum efficiency in phosphorescence, by introducing electron-donating/electron-withdrawing moieties to different positions of the ancillary ligand to adjust emission color. In addition to calculating the radiation rate and analyzing its determining factors, we also estimated nonradiative ability by evaluating the spin-orbit coupling matrix element between the ground state (S0) and the lowest triplet state (T1) as well as the reorganization energy from T1 to S0 to estimate quantum efficiency more accurately. In particular, an in-depth analysis on the contribution of each vibration mode to reorganization energy helped us to identify the effect of substituents on the nonradiative process. Besides, charge injection/transfer properties and energy relation of the states related to exciton quenching via the triplet metal-centered state were also examined, which provide an estimation on the OLED performance of our designed complexes. Overall, we expect 2b and 3c to be more efficient blue-emitting emitters than 1a and 3a and 3b to be efficient green and red emitters, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL