Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37259855

ABSTRACT

The mammalian epidermis undergoes constant renewal, replenished by a pool of stem cells and terminal differentiation of their progeny. This is accompanied by changes in gene expression and morphology that are orchestrated, in part, by epigenetic modifiers. Here, we define the role of the histone acetyltransferase KAT2A in epidermal homeostasis and provide a comparative analysis that reveals key functional divergence with its paralog KAT2B. In contrast to the reported function of KAT2B in epidermal differentiation, KAT2A supports the undifferentiated state in keratinocytes. RNA-seq analysis of KAT2A- and KAT2B- depleted keratinocytes revealed dysregulated epidermal differentiation. Depletion of KAT2A led to premature expression of epidermal differentiation genes in the absence of inductive signals, whereas loss of KAT2B delayed differentiation. KAT2A acetyltransferase activity was indispensable in regulating epidermal differentiation gene expression. The metazoan-specific N terminus of KAT2A was also required to support its function in keratinocytes. We further showed that the interplay between KAT2A- and KAT2B-mediated regulation was important for normal cutaneous wound healing in vivo. Overall, these findings reveal a distinct mechanism in which keratinocytes use a pair of highly homologous histone acetyltransferases to support divergent functions in self-renewal and differentiation processes.


Subject(s)
Histone Acetyltransferases , Keratinocytes , Animals , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Keratinocytes/metabolism , Cell Differentiation/genetics , Skin/metabolism , Epidermis/metabolism , Mammals/metabolism
2.
Epigenetics ; 17(4): 444-459, 2022 04.
Article in English | MEDLINE | ID: mdl-33890553

ABSTRACT

Dynamic shifts in chromatin states occur during embryonic epidermal development to support diverse epigenetic pathways that regulate skin formation and differentiation. However, it is not known whether the epigenomes established during embryonic development are maintained into adulthood or how these epigenetic mechanisms may be altered upon physiological ageing of the tissue. Here, we systematically profiled the nuclear enrichment of five key histone modifications in young and aged mouse epidermis and identified distinct chromatin states that are tightly correlated with cellular differentiation, as well as chromatin alterations that accompanied epidermal ageing. Our data showed that histone modifications, which become differentially enriched in undifferentiated basal or differentiated suprabasal cells during embryonic development, retained their distinct cell-type specific enrichment patterns in both young and aged adult tissues. Specifically, high levels of H3K4me3, H4K20me1 and H4K16ac marked the proliferative basal cells, while differentiated suprabasal cells accumulated H3K27me3 and H4K20me3 heterochromatin with a concomitant deacetylation of H4K16. We further identified shifts in the chromatin in the aged basal epidermis, which exhibited markedly reduced levels of H4K16ac, absence of high H4K20me1 staining and increased cell-to-cell variability in total histone H3 and H4 content. Changes in the chromatin profiles in aged tissues paralleled the altered expression of their corresponding histone modifiers in the basal keratinocytes. These results thus reveal the key histone signatures of epidermal differentiation that are conserved from embryonic development to adult homoeostasis, and provide insights into the epigenetic pathways underlying physiological skin ageing.


Subject(s)
Chromatin , DNA Methylation , Animals , Cell Differentiation , Chromatin/genetics , Epigenesis, Genetic , Heterochromatin , Histone Code , Mammals , Mice
3.
Front Immunol ; 13: 943159, 2022.
Article in English | MEDLINE | ID: mdl-35874681

ABSTRACT

Ageing-related delays and dysregulated inflammation in wound healing are well-documented in both human and animal models. However, cellular and molecular changes underlying this impairment in healing progression are not fully understood. In this study, we characterised ageing-associated changes to macrophages in wounds of young and aged mice and investigated transcriptomic differences that may impact the progression of wound healing. Full-thickness wounds created on the dorsum of C57BL/6J young and aged mice were excised on Days 3 and 7 post-wounding for analysis by immunohistochemistry, flow cytometry, and RNA sequencing. Our data revealed that macrophages were significantly reduced in aged wounds in comparison to young. Functional transcriptomic analyses showed that macrophages from aged wounds exhibited significantly reduced expression of cell cycle, DNA replication, and repair pathway genes. Furthermore, we uncovered an elevated pro-inflammatory gene expression program in the aged macrophages correlated with poor inflammation resolution and excessive tissue damage observed in aged wounds. Altogether, our work provides insights into how poorly healing aged wounds are phenotypically defined by the presence of macrophages with reduced proliferative capacity and an exacerbated inflammatory response, both of which are pathways that can be targeted to improve healing in the elderly.


Subject(s)
Skin , Wound Healing , Aged , Animals , Humans , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Skin/metabolism , Wound Healing/genetics
4.
Biomedicines ; 8(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096771

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disease with increasing prevalence worldwide. Diabetic foot ulcers (DFUs) are a serious complication of DM. It is estimated that 15-25% of DM patients develop DFU at least once in their lifetime. The lack of effective wound dressings and targeted therapy for DFUs often results in prolonged hospitalization and amputations. As the incidence of DM is projected to rise, the demand for specialized DFU wound management will continue to increase. Hence, it is of great interest to improve and develop effective DFU-specific wound dressings and therapies. In the last decade, 3D bioprinting technology has made a great contribution to the healthcare sector, with the development of personalized prosthetics, implants, and bioengineered tissues. In this review, we discuss the challenges faced in DFU wound management and how 3D bioprinting technology can be applied to advance current treatment methods, such as biomanufacturing of composite 3D human skin substitutes for skin grafting and the development of DFU-appropriate wound dressings. Future co-development of 3D bioprinting technologies with novel treatment approaches to mitigate DFU-specific pathophysiological challenges will be key to limiting the healthcare burden associated with the increasing prevalence of DM.

SELECTION OF CITATIONS
SEARCH DETAIL