Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Plant Microbe Interact ; 31(8): 842-855, 2018 08.
Article in English | MEDLINE | ID: mdl-29498566

ABSTRACT

Macrophomina phaseolina is a soil-borne fungal pathogen with a wide host range that causes charcoal rot in soybean [Glycine max (L.) Merr.]. Control of the disease is a challenge, due to the absence of genetic resistance and effective chemical control. Alternative or complementary measures are needed, such as the use of biological control agents, in an integrated approach. Several studies have demonstrated the role of arbuscular mycorrhizal fungi (AMF) in enhancing plant resistance or tolerance to biotic stresses, decreasing the symptoms and pressure caused by various pests and diseases, including M. phaseolina in soybean. However, the specific contribution of AMF in the regulation of the plant response to M. phaseolina remains unclear. Therefore, the objective of the present study was to investigate, under strict in-vitro culture conditions, the global transcriptional changes in roots of premycorrhized soybean plantlets challenged by M. phaseolina (+AMF+Mp) as compared with nonmycorrhizal soybean plantlets (-AMF+Mp). MapMan software was used to distinguish transcriptional changes, with special emphasis on those related to plant defense responses. Soybean genes identified as strongly upregulated during infection by the pathogen included pathogenesis-related proteins, disease-resistance proteins, transcription factors, and secondary metabolism-related genes, as well as those encoding for signaling hormones. Remarkably, the +AMF+Mp treatment displayed a lower number of upregulated genes as compared with the -AMF+Mp treatment. AMF seemed to counteract or balance costs upon M. phaseolina infection, which could be associated to a negative impact on biomass and seed production. These detailed insights in soybean-AMF interaction help us to understand the complex underlying mechanisms involved in AMF-mediated biocontrol and support the importance of preserving and stimulating the existing plant-AMF associates, via adequate agricultural practices, to optimize their agro-ecological potential.


Subject(s)
Ascomycota/physiology , Glycine max/microbiology , Mycorrhizae/physiology , Plant Diseases/microbiology , Biological Control Agents , Gene Expression Regulation, Plant , Plant Roots , Soil
2.
Virus Genes ; 49(2): 348-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24964778

ABSTRACT

We present the first report of a virus infecting the subtropical tree crop yerba mate (Ilex paraguariensis St. Hil.). Total RNA purification, followed by next-generation sequencing, transcripts assembly and annotation, resulted in the identification of a new endornavirus species infecting yerba mate. The complete sequence of the linear dsRNA viral genome is 13,954-nt long, contains a single 13,743 nt ORF, and presents a 149 nt 5'UTR and a 61 nt 3'UTR. The predicted ORF encodes a 4,581 aa polypeptide with a UDP-glucose glycosyl-transferase, a capsular polysaccharide synthesis protein, and a RNA-dependent RNA polymerase domain. The name yerba mate endornavirus is proposed for the identified virus. Due to the intriguing peculiarities of this virus family, and the complete lack of the yerba mate virus literature, we consider that the information reported here will be helpful in leading to a new and needed attention to this important topic and crop.


Subject(s)
Genome, Viral , Ilex paraguariensis/virology , Plant Viruses/genetics , RNA Viruses/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , 3' Untranslated Regions , 5' Untranslated Regions , Cluster Analysis , Molecular Sequence Data , Open Reading Frames , Phylogeny , Plant Viruses/isolation & purification , Polyproteins/genetics , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , Sequence Homology
3.
Front Plant Sci ; 12: 634397, 2021.
Article in English | MEDLINE | ID: mdl-33968098

ABSTRACT

Macrophomina phaseolina is a generalist soil-borne fungus present all over the world. It cause diseases such as stem and root rot, charcoal rot and seedling blight. Under high temperatures and low soil moisture, this fungus can cause substantial yield losses in crops such as soybean, sorghum and groundnut. The wide host range and high persistence of M. phaseolina in soil as microsclerotia make disease control challenging. Therefore, understanding the basis of the pathogenicity mechanisms as well as its interactions with host plants is crucial for controlling the pathogen. In this work, we aim to describe the general characteristics and pathogenicity mechanisms of M. phaseolina, as well as the hosts defense response. We also review the current methods and most promising forecoming ones to reach a responsible control of the pathogen, with minimal impacts to the environment and natural resources.

4.
Front Plant Sci ; 8: 1033, 2017.
Article in English | MEDLINE | ID: mdl-28670321

ABSTRACT

In this work, we described an in vitro system adequate for investigating the pathosystem soybean/arbuscular mycorrhizal fungi (AMF)/Fusarium virguliforme. Pre-mycorrhized plantlets with Rhizophagus irregularis were infected by F. virguliforme either locally via a plug of gel supporting mycelium (Method 1) or via a macroconidia suspension applied to the medium surface (Method 2). Root colonization by the AMF and infection by the pathogen were similar to the usual observations in pot experiments. Within a period of 18 days, more than 20% of the roots were colonized by the AMF and infection by the pathogen was observed in all the plants. In presence of AMF, a decrease in symptoms and in the level of root tissue infection was noticed. With Method 1, smaller necrotic lesions were observed in the pre-mycorrhized plantlets. In Method 2, pathogen infection was slower but more homogenous. These results demonstrated the suitability of the in vitro cultivation system to study the pathosystem soybean/AMF/F. virguliforme. We propose this in vitro cultivation system for studying the mechanisms involved in the biocontrol conferred by AMF against F. virguliforme in soybean.

5.
Genome Announc ; 4(3)2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27257193

ABSTRACT

Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris.

6.
Int J Radiat Biol ; 90(1): 104-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23859311

ABSTRACT

PURPOSE: To locate transient chromosome aberrations on a selected pepper cultivar and determine the tracing efficiency of different cytogenetic methods. MATERIALS AND METHODS: Seeds from Capsicum baccatum var. pendulum cultivar 'Cayenne' were treated with an acute dose of X-rays (300 Gy) and chromosome aberrations were analysed by different cytogenetic methods [Feulgen, silver staining for nucleolus organizer regions (silver positive nucleolus organizing regions or AgNOR), fluorescent banding, fluorescence in situ hybridization (FISH) and meiotic analysis]. RESULTS: A rearranged chromosome carrying two nucleolus organizing regions (NOR) induced by ionizing radiation was detected in the cultivar, with the occurrence of a small reciprocal exchange between a chromosome of pair no. 1 and another chromosome of pair no. 3, both carrying active NOR in short arms and associated chromomycin A positive/diamidino-phenylindole negative (CMA+/DAPI-) heterochromatin. Meiotic analysis showed a quadrivalent configuration, confirming a reciprocal translocation between two chromosomes. CONCLUSIONS: The use of X-rays in Capsicum allowed us to develop and identify a pepper line with structural rearrangements between two NOR-carrying chromosomes. We postulate that all the cytological techniques employed in this research were efficient in the search for chromosome aberrations. Particularly, Feulgen and AgNOR were the most suitable in those cases of transient rearrangements, whereas fluorescent banding and FISH were appropriate for intransitive ones.


Subject(s)
Capsicum/genetics , Capsicum/radiation effects , Chromosome Aberrations/radiation effects , Cytogenetic Analysis/methods , DNA, Plant/genetics , DNA, Plant/radiation effects , Gene Rearrangement/genetics , Base Sequence , Gene Rearrangement/radiation effects , Molecular Sequence Data , Radiation Dosage
7.
PLoS One ; 9(10): e109835, 2014.
Article in English | MEDLINE | ID: mdl-25330175

ABSTRACT

Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼ 32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼ 1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge of yerba mate genes, and is presented as the first genomic resource of this important crop.


Subject(s)
Gene Expression Profiling , Genes, Plant/genetics , High-Throughput Nucleotide Sequencing , Ilex paraguariensis/genetics , Chlorogenic Acid/metabolism , DNA Transposable Elements/genetics , DNA, Intergenic/genetics , Genomics , Ilex paraguariensis/enzymology , Methyltransferases/genetics , Microsatellite Repeats/genetics , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
8.
J Plant Physiol ; 167(18): 1622-6, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20801548

ABSTRACT

Oxidative stress responses generated by paraquat (PQ), an herbicide that triggers an oxidative stress reaction in leaves, were studied in non-arbuscular mycorrhizal (non-AM) and in arbuscular mycorrhizal (AM) soybean plants inoculated with Glomus mosseae (Gm) or Glomus intraradices (Gi). Some oxidative stress symptoms were evident in non-AM after 6 d of PQ application on leaves. Oxidative damage, measured as malondialdehyde content (MDA), was significantly higher, and although no changes were evident in total catalase (CAT, EC 1.11.1.6) and total superoxide dismutase (SOD, EC 1.15.1.1) activity, total ascorbate peroxidase (APX, EC 1.11.1.11) activity was significantly reduced. These effects were correlated with a significant decrease in growth parameters. By contrast, in both AM plants, foliar MDA content was reduced or unaltered and, interestingly, after PQ stress, its level was unchanged and significantly lower than in PQ non-AM plants. Unlike PQ stress in non-AM plants, total APX activity was unaltered or induced by AM plants, while total SOD activity was unchanged and no consistent effects were detected in total CAT activity. All these events coincided with no changes or a significant increase in growth parameters. Since oxidative stress is a common phenomenon triggered by several environmental stresses, these results highlight the importance of mycorrhizal fungi in oxidative stress regulation as a general strategy to protect plants from abiotic and biotic stress.


Subject(s)
Glycine max/metabolism , Glycine max/microbiology , Mycorrhizae/growth & development , Mycorrhizae/physiology , Oxidative Stress/physiology , Symbiosis
9.
Am J Bot ; 94(12): 1963-71, 2007 Dec.
Article in English | MEDLINE | ID: mdl-21636391

ABSTRACT

Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.

SELECTION OF CITATIONS
SEARCH DETAIL