Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS Pathog ; 17(4): e1009522, 2021 04.
Article in English | MEDLINE | ID: mdl-33872331

ABSTRACT

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, pDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


Subject(s)
Dendritic Cells/virology , HIV Infections/virology , HIV/immunology , Interferon-alpha/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Flow Cytometry , HIV/genetics , HIV/physiology , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , HIV Infections/immunology , Humans , Myeloid Cells/immunology , Myeloid Cells/virology , Phenotype
2.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33443088

ABSTRACT

Developing optimal T-cell response assays to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is critical for measuring the duration of immunity to this disease and assessing the efficacy of vaccine candidates. These assays need to target conserved regions of SARS-CoV-2 global variants and avoid cross-reactivity to seasonal human coronaviruses. To contribute to this effort, we employed an in silico immunoinformatics analysis pipeline to identify immunogenic peptides resulting from conserved and highly networked regions with topological importance from the SARS-CoV-2 nucleocapsid and spike proteins. A total of 57 highly networked T-cell epitopes that are conserved across geographic viral variants were identified from these viral proteins, with a binding potential to diverse HLA alleles and 80 to 100% global population coverage. Importantly, 18 of these T-cell epitope derived peptides had limited homology to seasonal human coronaviruses making them promising candidates for SARS-CoV-2-specific T-cell immunity assays. Moreover, two of the NC-derived peptides elicited effector/polyfunctional responses of CD8+ T cells derived from SARS-CoV-2 convalescent patients.IMPORTANCE The development of specific and validated immunologic tools is critical for understanding the level and duration of the cellular response induced by SARS-CoV-2 infection and/or vaccines against this novel coronavirus disease. To contribute to this effort, we employed an immunoinformatics analysis pipeline to define 57 SARS-CoV-2 immunogenic peptides within topologically important regions of the nucleocapsid (NC) and spike (S) proteins that will be effective for detecting cellular immune responses in 80 to 100% of the global population. Our immunoinformatics analysis revealed that 18 of these peptides had limited homology to circulating seasonal human coronaviruses and therefore are promising candidates for distinguishing SARS-CoV-2-specific immune responses from pre-existing coronavirus immunity. Importantly, CD8+ T cells derived from SARS-CoV-2 survivors exhibited polyfunctional effector responses to two novel NC-derived peptides identified as HLA-binders. These studies provide a proof of concept that our immunoinformatics analysis pipeline identifies novel immunogens which can elicit polyfunctional SARS-CoV-2-specific T-cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Coronavirus Nucleocapsid Proteins/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Antigen Presentation , COVID-19/blood , COVID-19/immunology , Computational Biology , Coronavirus/classification , Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , HLA Antigens/immunology , Humans , Immunity, Cellular , Mutation , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Binding , SARS-CoV-2/genetics , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
3.
J Immunol ; 196(11): 4437-44, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27207806

ABSTRACT

Immune cells cycle between a resting and an activated state. Their metabolism is tightly linked to their activation status and, consequently, functions. Ag recognition induces T lymphocyte activation and proliferation and acquisition of effector functions that require and depend on cellular metabolic reprogramming. Likewise, recognition of pathogen-associated molecular patterns by monocytes and macrophages induces changes in cellular metabolism. As obligate intracellular parasites, viruses manipulate the metabolism of infected cells to meet their structural and functional requirements. For example, HIV-induced changes in immune cell metabolism and redox state are associated with CD4(+) T cell depletion, immune activation, and inflammation. In this review, we highlight how HIV modifies immunometabolism with potential implications for cure research and pathogenesis of comorbidities observed in HIV-infected patients, including those with virologic suppression. In addition, we highlight recently described key methods that can be applied to study the metabolic dysregulation of immune cells in disease states.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV/immunology , HIV/pathogenicity , HIV/metabolism , HIV Infections/virology , Humans , Inflammation/immunology , Inflammation/metabolism
4.
J Gen Virol ; 94(Pt 4): 758-766, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23223624

ABSTRACT

We previously reported a naturally occurring BF intersubtype recombinant viral protein U (Vpu) variant with an augmented capacity to enhance viral replication. Structural analysis of this variant revealed that its transmembrane domain and α-helix I in the cytoplasmic domain (CTD) corresponded to subtype B, whereas the α-helix II in the CTD corresponded to subtype F1. In this study, we aimed to evaluate the role of the Vpu cytoplasmic α-helix II domain in viral release enhancement and in the down-modulation of BST-2 and CD4 from the cell surface. In addition, as serine residues in Vpu amino acid positions 61 or 64 have been shown to regulate Vpu intracellular half-life, which in turn could influence the magnitude of viral release, we also studied the impact of these residues on the VpuBF functions, since S61 and S64 are infrequently found among BF recombinant Vpu variants. Our results showed that the exchange of Vpu α-helix II between subtypes (B→F) directly correlated with the enhancement of viral release and, to a lesser extent, with changes in the capacity of the resulting chimera to down-modulate BST-2 and CD4. No differences in viral release and BST-2 down-modulation were observed between VpuBF and VpuBF-E61S. On the other hand, VpuBF-A64S showed a slightly reduced capacity to enhance viral production, but was modestly more efficient than VpuBF in down-modulating BST-2. In summary, our observations clearly indicate that α-helix II is actively involved in Vpu viral-release-promoting activity and that intersubtype recombination between subtypes B and F1 created a protein variant with a higher potential to boost the spread of the recombinant strain that harbours it.


Subject(s)
Antigens, CD/metabolism , HIV-1/pathogenicity , Human Immunodeficiency Virus Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virulence Factors/metabolism , Virus Release , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Genotype , HIV-1/classification , HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Humans , Proteolysis , Recombination, Genetic , Viral Regulatory and Accessory Proteins/genetics , Virulence Factors/genetics
5.
STAR Protoc ; 4(1): 102025, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853860

ABSTRACT

CD8+ T lymphocytes can recognize and eliminate cells infected by viruses. However, the human immunodeficiency virus (HIV-1) has developed mechanisms to evade CD8+ T-cell-mediated clearance. Here, we describe a protocol to assess the role of the HIV-1 protein Nef in immune evasion. The viral competition assay reveals the preferential killing of HIV-1-infected cells unable to express Nef. This methodology can be extended to study HIV-1 proteins involved in immune evasion and viral variants encoding cytotoxic T lymphocyte escape mutations. For complete details on the use and execution of this protocol, please refer to Duette et al. (2022).1.


Subject(s)
HIV-1 , Immune Evasion , Humans , HIV-1/genetics , HIV-1/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic
6.
Immunohorizons ; 7(6): 508-527, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37358499

ABSTRACT

Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte , Peptides
7.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35133986

ABSTRACT

Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/genetics , Humans , Proviruses/genetics , Viral Load , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/therapeutic use
8.
mBio ; 13(4): e0061122, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35943163

ABSTRACT

Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of ß-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)-glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals. IMPORTANCE Antiretroviral therapy has led to a dramatic reduction in HIV-related morbidity and mortality. However, cART does not eradicate the virus, which persists in resting CD4+ T cells as the main viral reservoir, consequently requiring lifelong treatment. A major question is how the functional status of the immune system during antiretroviral therapy determines the activity and size of the viral reservoir. In this study, we identified a central role for galectin-1 (Gal-1), a glycan-binding protein released in response to extracellular vesicles (EVs), in modulating the activity of HIV reservoir, thus shaping chronic immune activation in HIV-infected patients. Our work unveils a central role of Gal-1 in linking chronic immune activation and reservoir dynamics, highlighting new therapeutic opportunities in HIV infection.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Galectin 1/therapeutic use , HIV-1/physiology , Humans , Inflammation , RNA , Virus Latency , Virus Replication
9.
Virol J ; 7: 259, 2010 Oct 04.
Article in English | MEDLINE | ID: mdl-20920359

ABSTRACT

BACKGROUND: Multiple HIV-1 intersubtype recombinants have been identified in human populations. Previous studies from our lab group have shown that the epidemic in Argentina is characterized by the high prevalence of a circulating recombinant form, CRF12_BF, and many related BF recombinant forms. In these genomic structures a recombination breakpoint frequently involved the vpu coding region. Due to the scarce knowledge of Vpu participation in the virion release process and its impact on pathogenesis and of the functional capacities of intersubtype recombinant Vpu proteins, the aim of this work was to perform a comparative analysis on virion release capacity and relative replication capacity among viral variants harboring either a BF recombinant Vpu or a subtype B Vpu. RESULTS: Our results showed that BF recombinant Vpu was associated to an increased viral particles production when compared to WT B variant in tetherin-expressing cell lines. This observation was tested in the context of a competition assay between the above mentioned variants. The results showed that the replication of the BF Vpu-harboring variant was more efficient in cell cultures than subtype B, reaching a higher frequency in the viral population in a short period of time. CONCLUSION: This study showed that as a result of intersubtype recombination, a structurally re-organized HIV-1 Vpu has an improved in vitro capacity of enhancing viral replication, and provides evidence of the changes occurring in this protein function that could play an important role in the successful spread of intersubtype recombinant variants.


Subject(s)
HIV-1/physiology , Human Immunodeficiency Virus Proteins/genetics , Recombination, Genetic , Viral Regulatory and Accessory Proteins/genetics , Virulence Factors/genetics , Virus Release , Virus Replication , Cell Line , HIV-1/growth & development , Human Immunodeficiency Virus Proteins/physiology , Humans , Viral Load , Viral Regulatory and Accessory Proteins/physiology , Virulence Factors/physiology
10.
Methods Mol Biol ; 2184: 215-224, 2020.
Article in English | MEDLINE | ID: mdl-32808228

ABSTRACT

The analysis of mitochondrial dynamics within immune cells allows us to understand how fundamental metabolism influences immune cell functions, and how dysregulated immunometabolic processes impact biology and disease pathogenesis. For example, during infections, mitochondrial fission and fusion coincide with effector and memory T-cell differentiation, respectively, resulting in metabolic reprogramming. As frozen cells are generally not optimal for immunometabolic analyses, and given the logistic difficulties of analysis on cells within a few hours of blood collection, we have optimized and validated a simple cryopreservation protocol for peripheral blood mononuclear cells, yielding >95% cellular viability, as well as preserved metabolic and immunologic properties. Combining fluorescent dyes with cell surface antibodies, we demonstrate how to analyze mitochondrial density, membrane potential, and reactive oxygen species production in CD4 and CD8 T cells from cryopreserved clinical samples.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Leukocytes, Mononuclear/physiology , Mitochondria/physiology , Mitochondrial Dynamics/physiology , Antibodies/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Survival/physiology , Cryopreservation/methods , Humans , Leukocytes, Mononuclear/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
11.
Cell Rep ; 33(13): 108547, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378679

ABSTRACT

Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state. We expose M1 macrophages to the acellular fraction of tuberculous pleural effusions (TB-PEs) and find lower glycolytic activity, accompanied by elevated levels of OXPHOS and bacillary load, compared to controls. The eicosanoid fraction of TB-PE drives these metabolic alterations. HIF-1α stabilization reverts the effect of TB-PE by restoring M1 metabolism. Furthermore, Mtb-infected mice with stabilized HIF-1α display lower bacillary loads and a pronounced M1-like metabolic profile in alveolar macrophages (AMs). Collectively, we demonstrate that lipids from a TB-associated microenvironment alter the M1 macrophage metabolic reprogramming by hampering HIF-1α functions, thereby impairing control of Mtb infection.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipids/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis, Pleural/metabolism , Animals , Bacterial Load , Eicosanoids/pharmacology , Female , Glycolysis/drug effects , Host-Pathogen Interactions , Humans , Macrophage Activation , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Pleural Effusion , Tuberculosis, Pleural/microbiology
12.
J Extracell Vesicles ; 8(1): 1687275, 2019.
Article in English | MEDLINE | ID: mdl-31998449

ABSTRACT

Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.

13.
mBio ; 9(5)2018 09 11.
Article in English | MEDLINE | ID: mdl-30206166

ABSTRACT

Chronic immune activation and inflammation are hallmarks of HIV-1 infection and a major cause of serious non-AIDS events in HIV-1-infected individuals on antiretroviral treatment (ART). Herein, we show that cytosolic double-stranded DNA (dsDNA) generated in infected CD4+ T cells during the HIV-1 replication cycle promotes the mitochondrial reactive oxygen species (ROS)-dependent stabilization of the transcription factor hypoxia-inducible factor 1α (HIF-1α), which in turn, enhances viral replication. Furthermore, we show that induction of HIF-1α promotes the release of extracellular vesicles (EVs). These EVs foster inflammation by inducing the secretion of gamma interferon by bystander CD4+ T cells and secretion of interleukin 6 (IL-6) and IL-1ß by bystander macrophages through an HIF-1α-dependent pathway. Remarkably, EVs obtained from plasma samples from HIV-1-infected individuals also induced HIF-1α activity and inflammation. Overall, this study demonstrates that HIF-1α plays a crucial role in HIV-1 pathogenesis by promoting viral replication and the release of EVs that orchestrate lymphocyte- and macrophage-mediated inflammatory responses.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) is a very important global pathogen that preferentially targets CD4+ T cells and causes acquired immunodeficiency syndrome (AIDS) if left untreated. Although antiretroviral treatment efficiently suppresses viremia, markers of immune activation and inflammation remain higher in HIV-1-infected patients than in uninfected individuals. The hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a fundamental role in coordinating cellular metabolism and function. Here we show that HIV-1 infection induces HIF-1α activity and that this transcription factor upholds HIV-1 replication. Moreover, we demonstrate that HIF-1α plays a key role in HIV-1-associated inflammation by promoting the release of extracellular vesicles which, in turn, trigger the secretion of inflammatory mediators by noninfected bystander lymphocytes and macrophages. In summary, we identify that the coordinated actions of HIF-1α and extracellular vesicles promote viral replication and inflammation, thus contributing to HIV-1 pathogenesis.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Extracellular Vesicles/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation Mediators/metabolism , Virus Replication , CD4-Positive T-Lymphocytes/metabolism , Cell Line , DNA/metabolism , DNA, Viral/metabolism , HIV-1/growth & development , Humans , Interferon-gamma/metabolism , Macrophages/metabolism , Reactive Oxygen Species/metabolism
14.
FEBS Lett ; 591(20): 3319-3332, 2017 10.
Article in English | MEDLINE | ID: mdl-28892135

ABSTRACT

High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3-kinases (PI3K) activation measured by p-Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K-mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)-treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in 'virologically suppressed' cART-treated HIV+ persons.


Subject(s)
Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , Glucose Transporter Type 1/immunology , HIV Infections/metabolism , Receptors, OX40/immunology , Adult , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/immunology , Gene Expression Regulation , Glucose Transporter Type 1/genetics , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , Humans , Lymphocyte Activation , Male , Phosphoinositide-3 Kinase Inhibitors , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, OX40/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Virus Replication/drug effects
15.
Int Rev Immunol ; 35(6): 477-488, 2016 11.
Article in English | MEDLINE | ID: mdl-26606199

ABSTRACT

Much like cancer cells, activated T cells undergo various metabolic changes that allow them to grow and proliferate rapidly. By adopting aerobic glycolysis upon activation, T cells effectively prioritize efficiency in biosynthesis over energy generation. There are distinct differences in the way CD4+ and CD8+ T cells process activation signals. CD8+ effector T cells are less dependent on Glut1 and oxygen levels compared to their CD4+ counterparts. Similarly the downstream signaling by TCR also differs in both effector T cell types. Recent studies have explored PI3K/Akt, mTORC, HIF1α, p70S6K and Bcl-6 signaling in depth providing definition of the crucial roles of these regulators in glucose metabolism. These new insights may allow improved therapeutic manipulation against inflammatory conditions that are associated with dysfunctional T-cell metabolism such as autoimmune disorders, metabolic syndrome, HIV, and cancers.


Subject(s)
Autoimmune Diseases/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Glucose/metabolism , Glycolysis/immunology , Lymphocyte Activation , Signal Transduction/immunology , Antineoplastic Agents/therapeutic use , Autoimmune Diseases/drug therapy , Glucose Transporter Type 1/metabolism , Glycolysis/drug effects , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Metabolic Syndrome/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
16.
Cell Death Dis ; 7(10): e2437, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27787523

ABSTRACT

Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis, limiting their deleterious potential. However, this tightly regulated cell death program can be modulated by pathogen-associated molecular patterns (PAMPs), danger-associated molecular pattern (DAMPs), and inflammatory cytokines. We have previously reported that low pH, a hallmark of inflammatory processes and solid tumors, moderately delays neutrophil apoptosis. Here we show that fever-range hyperthermia accelerates the rate of neutrophil apoptosis at neutral pH but markedly increases neutrophil survival induced by low pH. Interestingly, an opposite effect was observed in lymphocytes; hyperthermia plus low pH prevents lymphocyte activation and promotes the death of lymphocytes and lymphoid cell lines. Analysis of the mechanisms through which hyperthermia plus low pH increased neutrophil survival revealed that hyperthermia further decreases cytosolic pH induced by extracellular acidosis. The fact that two Na+/H+ exchanger inhibitors, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and amiloride, reproduced the effects induced by hyperthermia suggested that it prolongs neutrophil survival by inhibiting the Na+/H+ antiporter. The neutrophil anti-apoptotic effect induced by PAMPs, DAMPs, and inflammatory cytokines usually leads to the preservation of the major neutrophil effector functions such as phagocytosis and reactive oxygen species (ROS) production. In contrast, our data revealed that the anti-apoptotic effect induced by low pH and hyperthermia induced a functional profile characterized by a low phagocytic activity, an impairment in ROS production and a high ability to suppress T-cell activation and to produce the angiogenic factors VEGF, IL-8, and the matrix metallopeptidase 9 (MMP-9). These results suggest that acting together fever and local acidosis might drive the differentiation of neutrophils into a profile able to promote both cancer progression and tissue repair during the late phase of inflammation, two processes that are strongly dependent on the local production of angiogenic factors by infiltrating immune cells.


Subject(s)
Apoptosis , Fever/pathology , Hyperthermia, Induced , Neovascularization, Physiologic , Neutrophils/pathology , Cell Proliferation , Humans , Hydrogen-Ion Concentration , Phenotype , T-Lymphocytes/metabolism
17.
J Cell Biol ; 209(3): 435-52, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25940347

ABSTRACT

During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.


Subject(s)
Cell Membrane/metabolism , HIV-1/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Virus Assembly/physiology , Virus Replication/physiology , rab GTP-Binding Proteins/metabolism , Biological Transport, Active/genetics , Cell Membrane/genetics , Cell Membrane/virology , Endosomes/genetics , Endosomes/metabolism , Endosomes/virology , Humans , Jurkat Cells , Macrophages/metabolism , Macrophages/virology , Membrane Proteins/metabolism , Minor Histocompatibility Antigens , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL