Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Renal Physiol ; 321(2): F236-F244, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34251273

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.


Subject(s)
Biomarkers/urine , Endoplasmic Reticulum Stress/physiology , Heat-Shock Proteins/urine , Immunosorbent Techniques , Nephritis, Interstitial/urine , Animals , Endoplasmic Reticulum Chaperone BiP , Humans , Mice , Nephritis, Interstitial/genetics , Uromodulin/genetics
2.
Am J Pathol ; 188(12): 2745-2762, 2018 12.
Article in English | MEDLINE | ID: mdl-30268775

ABSTRACT

Mutations in mitochondrial DNA as well as nuclear-encoded mitochondrial proteins have been reported to cause tubulointerstitial kidney diseases and focal segmental glomerulosclerosis (FSGS). Recently, genes and pathways affecting mitochondrial turnover and permeability have been implicated in adult-onset FSGS. Furthermore, dysfunctioning mitochondria may be capable of engaging intracellular innate immune-sensing pathways. To determine the impact of mitochondrial dysfunction in FSGS and secondary innate immune responses, we generated Cre/loxP transgenic mice to generate a loss-of-function deletion mutation of the complex IV assembly cofactor heme A:farnesyltransferase (COX10) restricted to cells of the developing nephrons. These mice develop severe, early-onset FSGS with innate immune activation and die prematurely with kidney failure. Mutant kidneys showed loss of glomerular and tubular epithelial function, epithelial apoptosis, and, in addition, a marked interferon response. In vitro modeling of Cox10 deletion in primary kidney epithelium compromises oxygen consumption, ATP generation, and induces oxidative stress. In addition, loss of Cox10 triggers a selective interferon response, which may be caused by the leak of mitochondrial DNA into the cytosol activating the intracellular DNA sensor, stimulator of interferon genes. This new animal model provides a mechanism to study mitochondrial dysfunction in vivo and demonstrates a direct link between mitochondrial dysfunction and intracellular innate immune response.


Subject(s)
Alkyl and Aryl Transferases/physiology , Disease Models, Animal , Glomerulosclerosis, Focal Segmental/etiology , Interferon Regulatory Factors/metabolism , Interferons/pharmacology , Membrane Proteins/physiology , Oxidative Stress , Sequence Deletion , Animals , Antiviral Agents/pharmacology , Female , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Interferon Regulatory Factors/genetics , Male , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/pathology
3.
J Am Soc Nephrol ; 29(6): 1690-1705, 2018 06.
Article in English | MEDLINE | ID: mdl-29739813

ABSTRACT

Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1ß recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1ß stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1ß and metabolic switch in fibrosis initiation and progression and highlight IL-1ß and MYC as potential therapeutic targets in tubulointerstitial diseases.


Subject(s)
Acute Kidney Injury/pathology , Interleukin-1beta/pharmacology , Kidney/cytology , Kidney/pathology , Proto-Oncogene Proteins c-myc/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/metabolism , Animals , Autophagy/drug effects , Azepines/pharmacology , Carrier Proteins/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Disease Progression , Extracellular Matrix/metabolism , Fibrosis , Glycolysis/drug effects , Humans , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Kidney Tubules, Proximal/pathology , Male , Membrane Proteins/metabolism , Mice , Organoids , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction , Stromal Cells/metabolism , Thyroid Hormones/metabolism , Triazoles/pharmacology , Thyroid Hormone-Binding Proteins
4.
J Am Soc Nephrol ; 28(6): 1769-1782, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28130402

ABSTRACT

Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ß-catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis.


Subject(s)
Connective Tissue Growth Factor/physiology , Kidney Diseases/etiology , Kidney/pathology , Low Density Lipoprotein Receptor-Related Protein-6/physiology , Animals , Connective Tissue Growth Factor/antagonists & inhibitors , Fibroblasts , Fibrosis/etiology , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pericytes
5.
J Am Soc Nephrol ; 28(6): 1741-1752, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28062569

ABSTRACT

Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvß5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvß5 in a rat model of renal IRI. Pretreatment with this anti-αvß5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvß5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvß5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvß5 antibody treatment. Immunostaining for αvß5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvß5 in modulating vascular leak. Additional studies showed αvß5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvß5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvß5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvß5 inhibition as a promising therapeutic strategy for AKI.


Subject(s)
Capillary Permeability/drug effects , Kidney/blood supply , Receptors, Vitronectin/antagonists & inhibitors , Reperfusion Injury/prevention & control , Animals , Male , Rats , Rats, Sprague-Dawley
6.
Am J Physiol Renal Physiol ; 312(3): F516-F532, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28052876

ABSTRACT

We have examined the pathogenic role of increased complement expression and activation during kidney fibrosis. Here, we show that PDGFRß-positive pericytes isolated from mice subjected to obstructive or folic acid injury secrete C1q. This was associated with increased production of proinflammatory cytokines, extracellular matrix components, collagens, and increased Wnt3a-mediated activation of Wnt/ß-catenin signaling, which are hallmarks of myofibroblast activation. Real-time PCR, immunoblots, immunohistochemistry, and flow cytometry analysis performed in whole kidney tissue confirmed increased expression of C1q, C1r, and C1s as well as complement activation, which is measured as increased synthesis of C3 fragments predominantly in the interstitial compartment. Flow studies localized increased C1q expression to PDGFRß-positive pericytes as well as to CD45-positive cells. Although deletion of C1qA did not prevent kidney fibrosis, global deletion of C3 reduced macrophage infiltration, reduced synthesis of C3 fragments, and reduced fibrosis. Clodronate mediated depletion of CD11bF4/80 high macrophages in UUO mice also reduced complement gene expression and reduced fibrosis. Our studies demonstrate local synthesis of complement by both PDGFRß-positive pericytes and CD45-positive cells in kidney fibrosis. Inhibition of complement activation represents a novel therapeutic target to ameliorate fibrosis and progression of chronic kidney disease.


Subject(s)
Complement Activation , Complement C1q/metabolism , Complement C3/metabolism , Kidney Tubules/metabolism , Macrophages/metabolism , Pericytes/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Cell Communication , Complement C1q/deficiency , Complement C1q/genetics , Complement C1q/immunology , Complement C3/deficiency , Complement C3/genetics , Complement C3/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Extracellular Matrix Proteins/metabolism , Fibrosis , Folic Acid , Genotype , Inflammation Mediators/metabolism , Kidney Tubules/immunology , Kidney Tubules/pathology , Leukocyte Common Antigens/metabolism , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Pericytes/immunology , Pericytes/pathology , Phenotype , Receptor, Platelet-Derived Growth Factor beta/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Time Factors , Ureteral Obstruction/complications , Wnt Signaling Pathway , Wnt3A Protein/metabolism
7.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L556-L567, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28188224

ABSTRACT

Pericytes are perivascular PDGF receptor-ß+ (PDGFRß+) stromal cells required for vasculogenesis and maintenance of microvascular homeostasis in many organs. Because of their unique juxtaposition to microvascular endothelium, lung PDGFRß+ cells are well situated to detect proinflammatory molecules released following epithelial injury and promote acute inflammatory responses. Thus we hypothesized that these cells represent an unrecognized immune surveillance or injury-sentinel interstitial cell. To evaluate this hypothesis, we isolated PDGFRß+ cells from murine lung and demonstrated that they have characteristics consistent with a pericyte population (referred to as pericyte-like cells for simplicity hereafter). We showed that pericyte-like cells expressed functional Toll-like receptors and upregulated chemokine expression following exposure to bronchoalveolar lavage fluid (BALF) collected from mice with sterile lung injury. Interestingly, BALF from mice without lung injury also induced chemokine expression in pericyte-like cells, suggesting that pericyte-like cells are primed to sense epithelial injury (permeability changes). Following LPS-induced lung inflammation, increased numbers of pericyte-like cells expressed IL-6, chemokine (C-X-C motif) ligand-1, chemokine (C-C motif) ligand 2/ monocyte chemotactic protein-1, and ICAM-1 in vivo. Sterile lung injury in pericyte-ablated mice was associated with decreased inflammation compared with normal mice. In summary, we found that pericyte-like cells are immune responsive and express diverse chemokines in response to lung injury in vitro and in vivo. Furthermore, pericyte-like cell ablation attenuated inflammation in sterile lung injury, suggesting that these cells play an important functional role in mediating lung inflammatory responses. We propose a model in which pericyte-like cells function as interstitial immune sentinels, detecting proinflammatory molecules released following epithelial barrier damage and participating in recruitment of circulating leukocytes.


Subject(s)
Immune System/cytology , Lung/cytology , Pericytes/cytology , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Inflammation/pathology , Inflammation Mediators/metabolism , Lung Injury/pathology , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Pericytes/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stromal Cells/metabolism
8.
PLoS Med ; 14(2): e1002248, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28245243

ABSTRACT

BACKGROUND: Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension. METHODS AND FINDINGS: To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 µg/kg/d and then 60 min at 30 µg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT/eNOS/NO signaling pathway in the kidney. In the randomized clinical study, infusion of serelaxin for 120 min increased total renal arterial blood flow by 65% (95% CI 40%, 95%; p < 0.001) from baseline. Administration of serelaxin was safe and well tolerated, with no detrimental effect on systemic blood pressure or hepatic perfusion. The clinical study's main limitations were the relatively small sample size and stable, well-compensated population. CONCLUSIONS: Our mechanistic findings in rat models and exploratory study in human cirrhosis suggest the therapeutic potential of selective renal vasodilation using serelaxin as a new treatment for renal dysfunction in cirrhosis, although further validation in patients with more advanced cirrhosis and renal dysfunction is required. TRIAL REGISTRATION: ClinicalTrials.gov NCT01640964.


Subject(s)
Kidney Diseases/drug therapy , Kidney/drug effects , Liver Cirrhosis/drug therapy , Relaxin/pharmacology , Relaxin/therapeutic use , Adolescent , Adult , Aged , Animals , Female , Glomerular Filtration Rate/drug effects , Humans , Kidney/blood supply , Male , Middle Aged , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Regional Blood Flow/drug effects , Scotland , Young Adult
9.
Kidney Int ; 91(3): 628-641, 2017 03.
Article in English | MEDLINE | ID: mdl-27927603

ABSTRACT

The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA1-deficient (LPA1-/-) or -sufficient (LPA1+/+) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA1-/-Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA1-/-Col-GFP mice. LPA-LPA1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis.


Subject(s)
Cell Communication/drug effects , Connective Tissue Growth Factor/metabolism , Epithelial Cells/drug effects , Fibroblasts/drug effects , Kidney Diseases/metabolism , Kidney/drug effects , Lysophospholipids/pharmacology , Receptors, Lysophosphatidic Acid/agonists , Signal Transduction/drug effects , Ureteral Obstruction/metabolism , Animals , Cell Proliferation/drug effects , Cells, Cultured , Collagen Type I/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Genotype , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Mice, Knockout , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Phenotype , Promoter Regions, Genetic , RNA Interference , Receptors, Lysophosphatidic Acid/deficiency , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Serum Response Factor/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Transfection , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology
10.
Am J Pathol ; 186(10): 2519-31, 2016 10.
Article in English | MEDLINE | ID: mdl-27555112

ABSTRACT

Pericytes, resident fibroblasts, and mesenchymal stem cells are poorly described cell populations. They have recently been characterized in much greater detail in rodent lungs and have been shown to play important roles in development, homeostasis, response to injury and pathogens, as well as recovery from damage. These closely related mesenchymal cell populations form extensive connections to the lung's internal structure, as well as its internal and external surfaces. They generate and remodel extracellular matrix, coregulate the vasculature, help maintain and restore the epithelium, and act as sentries for the immune system. In this review, we revisit these functions in light of significant advances in characterizing and tracking lung fibroblast populations in rodents. Lineage tracing experiments have mapped the heritage, identified functions that discriminate lung pericytes from resident fibroblasts, identified a subset of mesenchymal stem cells, and shown these populations to be the predominant progenitors of pathological fibroblasts and myofibroblasts in lung diseases. These findings point to the importance of resident lung mesenchymal populations as therapeutic targets in acute lung injury as well as fibrotic and degenerative diseases. Far from being passive and quiescent, pericytes and resident fibroblasts are busily sensing and responding, through diverse mechanisms, to changes in lung health and function.


Subject(s)
Fibroblasts/physiology , Lung Injury/therapy , Lung/pathology , Mesenchymal Stem Cells/physiology , Pericytes/physiology , Pulmonary Fibrosis/pathology , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Lineage , Disease Models, Animal , Extracellular Matrix/pathology , Humans , Lung/embryology , Lung Injury/pathology , Myofibroblasts/physiology , Phenotype , Pulmonary Fibrosis/therapy , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL