Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L7-L18, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37933449

ABSTRACT

COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P < 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW & NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , Pulmonary Fibrosis/complications , Prospective Studies , Follow-Up Studies , Bronchoalveolar Lavage Fluid , COVID-19/complications , Respiratory Distress Syndrome/pathology , Biomarkers
2.
Thorax ; 78(9): 912-921, 2023 09.
Article in English | MEDLINE | ID: mdl-37142421

ABSTRACT

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Biomarkers , Bronchoalveolar Lavage Fluid , COVID-19/complications , Critical Illness , Ligands , Respiratory Distress Syndrome/therapy , Male , Female , Middle Aged , Aged
3.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35616585

ABSTRACT

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


Subject(s)
COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
4.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675048

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a poor clinical prognosis and unsatisfactory treatment options. We previously found that the transcription factor CCAAT/Enhancer-Binding Protein Delta (C/EBPδ) is lowly expressed in PDAC compared to healthy pancreas duct cells, and that patient survival and lymph node involvement in PDAC is correlated with the expression of C/EBPδ in primary tumor cells. C/EBPδ shares a homologous DNA-binding sequence with other C/EBP-proteins, leading to the presumption that other C/EBP-family members might act redundantly and compensate for the loss of C/EBPδ. This implies that patient stratification could be improved when expression levels of multiple C/EBP-family members are considered simultaneously. In this study, we assessed whether the quantification of C/EBPß or C/EBPγ in addition to that of C/EBPδ might improve the prediction of patient survival and lymph node involvement using a cohort of 68 resectable PDAC patients. Using Kaplan-Meier analyses of patient groups with different C/EBP-expression levels, we found that both C/EBPß and C/EBPγ can partially compensate for low C/EBPδ and improve patient survival. Further, we uncovered C/EBPß as a novel predictor of a decreased likelihood of lymph node involvement in PDAC, and found that C/EBPß and C/EBPδ can compensate for the lack of each other in order to reduce the risk of lymph node involvement. C/EBPγ, on the other hand, appears to promote lymph node involvement in the absence of C/EBPδ. Altogether, our results show that the redundancy of C/EBP-family members might have a profound influence on clinical prognoses and that the expression of both C/EPBß and C/EBPγ should be taken into account when dichotomizing patients according to C/EBPδ expression.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Carcinoma, Pancreatic Ductal , Gene Expression Regulation , Pancreatic Neoplasms , Humans , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Lymphatic Metastasis/physiopathology , Prognosis
5.
Eur J Immunol ; 51(6): 1535-1538, 2021 06.
Article in English | MEDLINE | ID: mdl-33768543

ABSTRACT

Despite high levels of CXCR3 ligands in mechanically ventilated COVID-19 patients, BALF CD8 T cells were not enriched in CXCR3+ cells but rather CCR6+ , likely due to high CCL20 levels in BALF, and had very high PD-1 expression. In mechanically ventilated, but not ward, patients Th-1 immunity is impaired. ​.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Chemokine CCL20/immunology , Lung/immunology , Receptors, CCR6/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , COVID-19/therapy , Female , Humans , Lung/pathology , Lymphocyte Count , Male , Middle Aged
6.
Respir Res ; 23(1): 162, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725453

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and severe disease characterized by excessive matrix deposition in the lungs. Macrophages play crucial roles in maintaining lung homeostasis but are also central in the pathogenesis of lung diseases like pulmonary fibrosis. Especially, macrophage polarization/activation seems to play a crucial role in pathology and epigenetic reprograming is well-known to regulate macrophage polarization. DNA methylation alterations in IPF lungs have been well documented, but the role of DNA methylation in specific cell types, especially macrophages, is poorly defined. METHODS: In order to determine the role of DNA methylation in macrophages during pulmonary fibrosis, we subjected macrophage specific DNA methyltransferase (DNMT)3B, which mediates the de novo DNA methylation, deficient mice to the bleomycin-induced pulmonary fibrosis model. Macrophage polarization and fibrotic parameters were evaluated at 21 days after bleomycin administration. Dnmt3b knockout and wild type bone marrow-derived macrophages were stimulated with either interleukin (IL)4 or transforming growth factor beta 1 (TGFB1) in vitro, after which profibrotic gene expression and DNA methylation at the Arg1 promotor were determined. RESULTS: We show that DNMT3B deficiency promotes alternative macrophage polarization induced by IL4 and TGFB1 in vitro and also enhances profibrotic macrophage polarization in the alveolar space during pulmonary fibrosis in vivo. Moreover, myeloid specific deletion of DNMT3B promoted the development of experimental pulmonary fibrosis. CONCLUSIONS: In summary, these data suggest that myeloid DNMT3B represses fibrotic macrophage polarization and protects against bleomycin induced pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophage Activation , Animals , Bleomycin/toxicity , DNA/metabolism , Fibrosis , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
FASEB J ; 35(5): e21599, 2021 05.
Article in English | MEDLINE | ID: mdl-33913570

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology with minimal treatment options. Repetitive alveolar epithelial injury has been suggested as one of the causative mechanisms of this disease. Type 2 alveolar epithelial cells (AEC2) play a crucial role during fibrosis by functioning as stem cells able to repair epithelial damage. The DNA demethylase Tet methylcytosine dioxygenase 2 (TET2) regulates the stemness of multiple types of stem cells, but whether it also affects the stemness of AEC2 during fibrosis remains elusive. To study the role of TET2 in AEC2 during fibrosis, we first determined TET2 protein levels in the lungs of IPF patients and compared TET2 expression in AEC2 of IPF patients and controls using publicly available data sets. Subsequently, pulmonary fibrosis was induced by the intranasal administration of bleomycin to wild-type and AEC2-specific TET2 knockout mice to determine the role of TET2 in vivo. Fibrosis was assessed by hydroxyproline analysis and fibrotic gene expression. Additionally, macrophage recruitment and activation, and epithelial injury were analyzed. TET2 protein levels and gene expression were downregulated in IPF lungs and AEC2, respectively. Bleomycin inoculation induced a robust fibrotic response as indicated by increased hydroxyproline levels and increased expression of pro-fibrotic genes. Additionally, increased macrophage recruitment and both M1 and M2 activation were observed. None of these parameters were, however, affected by AEC2-specific TET2 deficiency. TET2 expression is reduced in IPF, but the absence of TET2 in AEC2 cells does not affect the development of bleomycin-induced pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Bleomycin/toxicity , Cell Movement , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Idiopathic Pulmonary Fibrosis/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , Animals , Antibiotics, Antineoplastic/toxicity , DNA-Binding Proteins/genetics , Dioxygenases , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins/genetics
8.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: mdl-33846275

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
9.
FASEB J ; 33(10): 10966-10972, 2019 10.
Article in English | MEDLINE | ID: mdl-31287960

ABSTRACT

Vorapaxar-dependent protease-activated receptor (PAR)-1 inhibition diminishes diabetic nephropathy in experimental type 1 diabetes. As most patients with diabetic nephropathy suffer from type 2 diabetes, the aim of this study was to investigate whether PAR-1 inhibition also limits diabetic nephropathy in experimental type 2 diabetes. Consequently, leptin-deficient black and tan brachyuric (BTBRob/ob) mice were randomly assigned to vorapaxar (1.75 mg/kg; twice weekly via oral gavage) or vehicle treatment, whereas matched wild-type (WT) BTBR (BTBRWT) mice served as nondiabetic controls. Weight and (nonfasting) blood glucose levels were monitored for up to 18 wk, after which kidney function and histologic damage was evaluated postmortem. We show that blood glucose levels and body weight increased in diabetic BTBRob/ob mice compared with nondiabetic BTBRWT controls. Vorapaxar-dependent PAR-1 inhibition reduced but did not normalize blood glucose levels in BTBRob/ob mice, whereas it potentiated the increase in body weight. Vorapaxar did not, however, preserve kidney function, whereas it only minimally reduced histopathological signs of kidney injury. Overall, we thus show that PAR-1 inhibition reduces blood glucose levels during the progression of diabetic nephropathy in experimental type 2 diabetes but does not improve renal function. This is in contrast to the therapeutic potential of vorapaxar in type 1 diabetes-induced nephropathy, highlighting the importance of disease-dependent treatment modalities.-Waasdorp, M., Florquin, S., Duitman, J., Spek, C. A. Pharmacological PAR-1 inhibition reduces blood glucose levels but does not improve kidney function in experimental type 2 diabetic nephropathy.


Subject(s)
Blood Glucose/metabolism , Diabetic Nephropathies/drug therapy , Kidney/drug effects , Lactones/therapeutic use , Pyridines/therapeutic use , Receptor, PAR-1/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/genetics , Diabetic Nephropathies/metabolism , Female , Kidney/physiopathology , Lactones/pharmacology , Male , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , Receptors, Leptin/deficiency , Receptors, Leptin/genetics
10.
Carcinogenesis ; 40(1): 155-163, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30325409

ABSTRACT

CCAAT/enhancer-binding protein delta (CEBPD) is associated with the regulation of apoptosis and cell proliferation and is a candidate tumor suppressor gene. Here, we investigated its role in hepatocellular carcinoma (HCC). We observe that CEBPD mRNA expression is significantly downregulated in HCC tumors as compared with adjacent tissues. Protein levels of CEBPD are also lower in tumors relative to adjacent tissues. Reduced expression of CEBPD in the tumor correlates with worse clinical outcome. In both Huh7 and HepG2 cells, shRNA-mediated CEBPD knockdown significantly reduces cell proliferation, single cell colony formation and arrests cells in the G0/G1 phase. Subcutaneous xenografting of Huh7 in nude mice show that CEBPD knockdown results in smaller tumors. Gene expression analysis shows that CEBPD modulates interleukin-1 signaling. We conclude that CEBPD expression uncouples cancer compartment expansion and clinical outcome in HCC, potentially by modulating interleukin-1 signaling. Thus, although our results support the notion that CEBPD acts as a tumor suppressor in HCC, its action does not involve impairing compartment expansion per se but more likely acts through improving anticancer immunity.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta/physiology , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Animals , CCAAT-Enhancer-Binding Protein-delta/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Mice , RNA, Messenger/analysis , Sequence Analysis, RNA
11.
J Cell Mol Med ; 23(2): 1268-1279, 2019 02.
Article in English | MEDLINE | ID: mdl-30485646

ABSTRACT

End-stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease-activated receptor (PAR)-1, which recently emerged as an inducer of epithelial-to-mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR-1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR-1-deficient mice during unilateral ureter obstruction (UUO) and that PAR-1-deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild-type and PAR-1-deficient mice suggesting that diminished fibrosis in PAR-1-deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR-1-deficient animals which were accompanied by diminished production of MCP-1 and TGF-ß. Overall, we thus show that PAR-1 drives EMT of TECs in vitro and aggravates UUO-induced renal fibrosis although this is likely due to PAR-1-dependent pro-fibrotic cytokine production rather than EMT.


Subject(s)
Acute Kidney Injury/etiology , Fibrosis/etiology , Kidney Diseases/physiopathology , Nephritis, Interstitial/etiology , Receptor, PAR-1/physiology , Ureteral Obstruction/complications , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Chronic Disease , Epithelial-Mesenchymal Transition , Fibrosis/metabolism , Fibrosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology , Signal Transduction , Transforming Growth Factor beta1/metabolism
12.
FASEB J ; 32(3): 1250-1264, 2018 03.
Article in English | MEDLINE | ID: mdl-29122847

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by the deposition of excessive extracellular matrix and the destruction of lung parenchyma, resulting from an aberrant wound-healing response. Although IPF is often associated with an imbalance in protease activity, the mechanisms underlying the sustained repair mechanisms are not fully understood. Here, we addressed the role of the recently identified, membrane-anchored serine protease human airway trypsin-like protease (HAT). In the present study, we show that both HAT expression and activity were up-regulated in human IPF specimens. Next, adenoviral overexpression of HAT before bleomycin challenge attenuated lung injury as well as extracellular matrix deposition in the bleomycin-induced pulmonary fibrosis model. In vitro, HAT prevented specific fibrosis-associated responses in primary human pulmonary fibroblasts and induced the expression of mediators associated with the prostaglandin E2 pathway. Altogether, our findings suggested that HAT could have a protective role in IPF and other fibrotic lung disorders.-Menou, A., Flajolet, P., Duitmen, J., Justet, A., Moog, S., Jaillet, M., Tabèze, L., Solhonne, B., Garnier, M., Mal, H., Mordant, P., Castier, Y., Cazes, A., Sallenave, J.-M., Mailleux, A. A., Crestani, B. Human airway trypsin-like protease exerts potent, antifibrotic action in pulmonary fibrosis.


Subject(s)
Lung Injury/prevention & control , Pulmonary Fibrosis/prevention & control , Serine Endopeptidases/administration & dosage , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Case-Control Studies , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Lung/drug effects , Lung/enzymology , Lung/pathology , Lung Injury/chemically induced , Lung Injury/enzymology , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/pathology , Serine Endopeptidases/metabolism , Signal Transduction
14.
J Infect Dis ; 217(9): 1462-1471, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29415278

ABSTRACT

Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. Protease-activated receptor 2 (PAR2) is expressed by different cell types in the lungs and can mediate inflammatory responses. We sought to determine the role of PAR2 during pneumococcal pneumonia. Pneumococcal pneumonia or sepsis was induced in wild-type and PAR2 knock-out (Par2-/-) mice by infection with viable S. pneumoniae. Par2-/- mice demonstrated improved host defense, a largely preserved lung barrier integrity, and reduced mortality during pneumococcal pneumonia. PAR2 deficiency did not influence bacterial growth after intravenous infection. Inhibition of the endogenous PAR2 activating proteases tissue factor/factor VIIa or tryptase did not impact on bacterial burdens during pneumonia. In a PAR2 reporter cell line it was demonstrated that S. pneumoniae-derived proteases are able to cleave PAR2. These results show that S. pneumoniae is able to cleave and exploit PAR2 to disseminate systemically from the airways.


Subject(s)
Pneumonia, Pneumococcal/microbiology , Receptor, PAR-2 , Streptococcus pneumoniae/physiology , Animals , Bacterial Load , Blood Coagulation , Gene Expression Regulation/drug effects , HEK293 Cells , Helminth Proteins/pharmacology , Humans , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia, Pneumococcal/pathology , Specific Pathogen-Free Organisms
15.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L657-L668, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28235951

ABSTRACT

More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.


Subject(s)
Respiration Disorders/enzymology , Serine Endopeptidases/metabolism , Animals , Biocatalysis , Fetal Development , Humans , Models, Biological , Respiration Disorders/embryology , Respiration Disorders/pathology , Serine Endopeptidases/chemistry
16.
Crit Care Med ; 45(5): e524-e531, 2017 May.
Article in English | MEDLINE | ID: mdl-28240686

ABSTRACT

OBJECTIVES: Sepsis is a complex clinical condition associated with high morbidity and mortality. A distinctive feature of sepsis is the reduced capacity of leukocytes to release proinflammatory cytokines in response to ex vivo stimulation. Cellular signaling events leading to immunosuppression in sepsis are not well defined. We investigated cell-specific signaling events underlying the immunosuppressed phenotype in sepsis. DESIGN: Ex vivo study. SETTING: ICU of an academic hospital. PATIENTS: Nineteen patients with sepsis and 19 age-matched healthy controls. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The phosphorylation state of p38 mitogen activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cells were determined in ex vivo stimulated CD4 T cells, CD8 T cells, B cells, monocytes, and neutrophils. Messenger RNA expression levels of p38 mitogen activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cells and negative regulators tumor necrosis factor-α-induced protein 3 (A20) and mitogen activated protein kinase phosphatase-1 were determined in neutrophils and peripheral blood mononuclear cells. Upon ex vivo stimulation, monocytes of sepsis patients were less capable in phosphorylating nuclear factor kappa-light-chain-enhancer of activated B cells. Sepsis was also associated with reduced phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells in stimulated B cells, CD4 and CD8 T cells. Messenger RNA expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells and A20 were diminished in peripheral blood mononuclear cells of sepsis patients, whereas p38 mitogen activated protein kinase messenger RNA was up-regulated. In neutrophils of sepsis patients, mitogen activated protein kinase phosphatase-1 messenger RNA levels were down-regulated. CONCLUSIONS: Sepsis-induced immunosuppression associates with a defect in the capacity to phosphorylate nuclear factor kappa-light-chain-enhancer of activated B cells in lymphoid cells and monocytes.


Subject(s)
NF-kappa B/metabolism , Sepsis/immunology , p38 Mitogen-Activated Protein Kinases/metabolism , Aged , Female , Flow Cytometry , Humans , Lymphocyte Subsets/metabolism , Male , Middle Aged , NF-kappa B/genetics , RNA, Messenger , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/genetics
17.
BMC Infect Dis ; 16(1): 670, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27835970

ABSTRACT

BACKGROUND: The most frequent pathogen that causes bacterial meningitis is the Gram-positive bacterium Streptococcus (S.) pneumoniae. CCAAT/enhancer binding protein δ is a transcription factor that has recently been hypothesized to play a detrimental role in outcome of meningitis caused by S. pneumoniae. Here, we studied the role of C/EBPδ prior to the development of pneumococcal meningitis. METHODS: Wild-type and C/EBPδ-deficient mice (C/EBPδ-/-) were intraveneously infected with S. pneumoniae and sacrificed after 24 or 48 h. cebpδ expression, bacterial loads, inflammatory response and pathology in the brain were assessed. RESULTS: S. pneumoniae induces cebpδ expression in the brain during blood-borne brain infection. In comparison to wild-type mice, C/EBPδ-/- animals showed decreased bacterial loads in blood and brain 48 h after inoculation. In the blood compartment, the host inflammatory response was significantly lower upon infection in C/EBPδ-/- mice as compared to wild-type mice. CONCLUSION: C/EBPδ facilitates bacterial dissemination to the brain and enhances the immune response in the blood compartment. Our study suggests that C/EBPδ plays a detrimental role during the initial development of blood-borne brain infection.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta/metabolism , Meningitis, Pneumococcal/pathology , Streptococcus pneumoniae , Animals , Bacterial Load , Brain/microbiology , Humans , Meningitis, Pneumococcal/metabolism , Mice , Mice, Knockout , Transcription Factors
19.
J Neuroinflammation ; 12: 88, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25958220

ABSTRACT

BACKGROUND: The prognosis of bacterial meningitis largely depends on the severity of the inflammatory response. The transcription factor CAAT/enhancer-binding protein δ (C/EBPδ) plays a key role in the regulation of the inflammatory response during bacterial infections. Consequently, we assessed the role of C/EBPδ during experimental meningitis. METHODS: Wild-type and C/EBPδ-deficient mice (C/EBPδ(-/-)) were intracisternally infected with Streptococcus pneumoniae and sacrificed after 6 or 30 h, or followed in a survival study. RESULTS: In comparison to wild-type mice, C/EBPδ(-/-) mice showed decreased bacterial loads at the primary site of infection and decreased bacterial dissemination to lung and spleen 30 h after inoculation. Expression levels of the inflammatory mediators IL-10 and KC were lower in C/EBPδ(-/-) brain homogenates, whereas IL-6, TNF-α, IL-1ß, and MIP-2 levels were not significantly different between the two genotypes. Moreover, C/EBPδ(-/-) mice demonstrated an attenuated systemic response as reflected by lower IL-10, IL-6, KC, and MIP-2 plasma levels. No differences in clinical symptoms or in survival were observed between wild-type and C/EBPδ(-/-) mice. CONCLUSION: C/EBPδ in the brain drives the inflammatory response and contributes to bacterial dissemination during pneumococcal meningitis. C/EBPδ does, however, not affect clinical parameters of the disease and does not confer a survival benefit.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta/metabolism , Cytokines/metabolism , Gene Expression Regulation, Bacterial/genetics , Inflammation/etiology , Meningitis, Pneumococcal/complications , Streptococcus pneumoniae/physiology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Bacterial Load , CCAAT-Enhancer-Binding Protein-delta/genetics , Cytokines/genetics , Disease Models, Animal , Disease Progression , L-Lactate Dehydrogenase/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger/metabolism , Time Factors
20.
Proc Natl Acad Sci U S A ; 109(23): 9113-8, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615380

ABSTRACT

CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ(-/-) mice are relatively resistant to pneumococcal pneumonia, as indicated by delayed and reduced mortality, diminished outgrowth of pneumococci in lungs, and reduced dissemination of the infection. Moreover, expression of platelet-activating factor receptor (PAFR), which is known to potentiate bacterial translocation of gram-positive bacteria, was significantly reduced during infection in C/EBPδ(-/-) mice compared with WT controls. Importantly, cell stimulation experiments revealed that C/EBPδ potentiates PAFR expression induced by lipoteichoic acid and pneumococci. Thus, C/EBPδ exaggerates bacterial dissemination during Streptococcus pneumoniae-induced pulmonary infection, suggesting an important role for PAFR-dependent bacterial translocation.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta/immunology , Gene Expression Regulation/physiology , Platelet Membrane Glycoproteins/metabolism , Pneumonia, Pneumococcal/immunology , Receptors, G-Protein-Coupled/metabolism , Animals , Blotting, Western , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , Cell Line , Enzyme-Linked Immunosorbent Assay , Histological Techniques , Humans , Luciferases , Lung/microbiology , Lung/pathology , Mice , Mice, Knockout , Permeability , Pneumonia, Pneumococcal/microbiology , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL