Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Dairy Sci ; 102(8): 7408-7420, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31178180

ABSTRACT

The high metabolic demand during the transition into lactation places cows at greater risk of metabolic and infectious disease than at any other time in their lactation cycle. Additionally, a change occurs in the innate immune response during this period, which contributes to increased risk of disease. In the current study, we compared the transcriptomes of neutrophils from dairy cows divergent in their metabolic health post-calving. Cows (n = 5 per risk group) were selected from a parent experiment (n = 45 cows). Those with high or low concentrations of plasma nonesterified fatty acids, plasma ß-hydroxybutyrate, and liver triacylglycerol in both wk 1 and 2 were deemed to be at "high risk" (HR) or "low risk" (LR) of metabolic dysfunction, respectively. Circulating neutrophils were isolated at 3 time points during the transition period (d 0 and wk 1 and 4 post-calving), and gene expression was analyzed using RNA sequencing. Differential gene expression between the risk groups was determined using edgeR (http://bioconductor.org), and pathway analysis was conducted using Ingenuity Pathway Analysis (Ingenuity Systems, Qiagen, Valencia, CA). Statistical analysis indicated no interaction between risk and week. Therefore, the overall effect of risk was analyzed across all time points. In total, 3,500 genes were differentially expressed between the HR and LR cows (false discovery rate < 0.05). Of these, 2,897 genes were identified by Ingenuity Pathway Analysis and used for pathway analysis. Of the relevant pathways identified, neutrophils isolated from HR cows showed downregulation of genes involved in the recruitment of granulocytes, interferon signaling, and apoptosis, and upregulation of genes involved in cell survival. The results indicate that metabolically stressed cows had reduced neutrophil function during the peripartum period, highlighting a potential relationship between subclinical metabolic disease and innate immune function that suggests that metabolic health negatively affects the innate immune system and may contribute to the state of immunosuppression during the peripartum period. In this way, the metabolic stress among the HR cows may reduce their ability to combat infection during the transition period.


Subject(s)
Cattle/immunology , Gene Expression Profiling/veterinary , Neutrophils/immunology , Peripartum Period/immunology , Stress, Physiological/immunology , 3-Hydroxybutyric Acid/blood , Animals , Cattle/genetics , Cattle Diseases/immunology , Fatty Acids, Nonesterified/blood , Female , Gene Expression , Immunity/genetics , Lactation/physiology , Liver/chemistry , Risk Factors , Sequence Analysis, RNA/veterinary , Triglycerides/analysis , Up-Regulation
2.
J Dairy Sci ; 100(8): 6763-6771, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28624280

ABSTRACT

Reverse-transcription quantitative-PCR (RT-qPCR) is commonly used for assessing the cellular response to changes in physiologic and pathologic conditions. The selection of stable endogenous control genes is an important step of any RT-qPCR study, as expression can vary depending on the experimental environment. Our objective was to identify endogenous control genes in circulating neutrophils isolated from cows during the peripartum period. To do this, we used microfluidics gene expression arrays (Fluidigm, San Francisco, CA) for RT-qPCR analysis. Selection of the endogenous control genes was based on previous research investigating gene expression in neutrophils. The selected genes included ACTB, B2M, G6PD, GAPDH, GCH1, GOLGA5, OSBPL2, PGK1, RPL13A, RPL19, RPS9, SDHA, SMUG1, SNRPA, TBP, UXT, and YWHAZ. Four genes (GAPDH, GOLGA5, PGK1, and UXT) did not provide satisfactory quantification results using the selected method and were therefore excluded from the analyses. The suitability of the remaining 13 genes for use as endogenous control genes was assessed using geNorm and Normfinder. The gene pair with the greatest stability using geNorm was RPL13A and RPL19, whereas Normfinder ranked RPL19 and YWHAZ as the most stable pair. The 2 genes deemed most suitable for the experimental design were RPL19 and YWHAZ, which were selected for subsequent gene expression analysis. This study highlights that genes used as endogenous controls for relative quantification should be assessed on an experimental basis, even if the genes have been used in previous research.


Subject(s)
Cattle/genetics , Gene Expression Profiling , Neutrophils/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Animals , Female , Gene Expression , Microfluidics , Real-Time Polymerase Chain Reaction/methods , Reference Standards
3.
J Dairy Sci ; 100(7): 5687-5700, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28456398

ABSTRACT

The greatest risk of metabolic and infectious disease in dairy cows is during the transition from pregnancy to lactating (i.e., the transition period). The objective of this experiment was to determine the effects of extracellular vesicles (microvesicles involved in cell-to-cell signaling) isolated from transition cows on target cell function. We previously identified differences in the protein profiles of exosomes isolated from cows divergent in metabolic health status. Therefore, we hypothesized that these exosomes would affect target tissues differently. To investigate this, 2 groups of cows (n = 5/group) were selected based on the concentration of ß-hydroxybutyrate and fatty acids in plasma and triacylglycerol concentration in liver at wk 1 and 2 postcalving. Cows with high concentrations of ß-hydroxybutyrate, fatty acids, and triacylglycerol were considered at increased risk of clinical disease during the transition period (high-risk group; n = 5) and were compared with cows that had low concentrations of the selected health indicators (low-risk group; n = 5). At 2 time points during the transition period (postcalving at wk 1 and 4), blood was sampled and plasma exosomes were isolated from the high-risk and low-risk cows. The exosomes were applied at concentrations of 10 and 1 µg/mL to 5 × 103 Madin-Darby bovine kidney cells grown to 50% confluence in 96-well plates. Results indicate a numerical increase in cell proliferation when exosomes from high-risk cows were applied compared with those from low-risk cows. Consistent with an effect on cell proliferation, quantitative reverse transcriptase PCR indicated a trend for upregulation of 3 proinflammatory genes (granulocyte colony-stimulating factor, ciliary neurotrophic factor, and CD27 ligand) with the application of high-risk exosomes, which are involved in cellular growth and survival. Proteomic analysis indicated 2 proteins in the low-risk group that were not identified in the high-risk group (endoplasmin and catalase), which may also be indicative of the metabolic state of origin. It is likely that the metabolic state of the transition cow affects cellular function through exosomal messaging; however, more in-depth research into cross-talk between exosomes and target cells is required to determine whether exosomes influence Madin-Darby bovine kidney cells in this manner.


Subject(s)
3-Hydroxybutyric Acid/blood , Exosomes/physiology , Fatty Acids, Nonesterified/blood , Liver/chemistry , Triglycerides/analysis , Animals , Biomarkers/analysis , Biomarkers/blood , CD27 Ligand/metabolism , Cattle , Cell Proliferation , Ciliary Neurotrophic Factor/metabolism , Female , Granulocyte Colony-Stimulating Factor/metabolism , Lactation , Milk , Organ Specificity , Pregnancy , Proteomics , Risk Assessment , Up-Regulation
4.
J Dairy Sci ; 100(3): 2310-2322, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28109589

ABSTRACT

Extensive metabolic, physiological, and immunological changes are associated with calving and the onset of lactation. As a result, cows transitioning between pregnancy and lactation are at a greater risk of metabolic and infectious diseases. The ability of neutrophils to mount an effective immune response to an infection is critical for its resolution, and increasing evidence indicates that precalving nutrition affects postpartum neutrophil function. The objectives of the current study were to investigate the effect of 2 precalving body condition scores (BCS; 4 vs. 5 on a 10-point scale) and 2 levels of feeding (75 vs. 125% of estimated maintenance requirements) on gene expression in circulating neutrophils. We isolated RNA from the neutrophils of cows (n = 45) at 5 time points over the transition period: precalving (-1 wk), day of calving (d 0), and postcalving at wk 1, 2, and 4. Quantitative reverse transcriptase PCR with custom-designed primer pairs and Roche Universal Probe Library (Roche, Basel, Switzerland) chemistry, combined with microfluidics integrated fluidic circuit chips (96.96 dynamic array), were used to quantify the expression of 78 genes involved in neutrophil function and 18 endogenous control genes. Statistical significance between time points was determined using repeated measures ANOVA with Tukey-Kramer multiple-testing correction to determine treatment effects among weeks. Precalving BCS altered the inflammatory state of neutrophils, with significant increases in overall gene expression of antimicrobial peptides (BNBD4 and DEFB10) and the anti-inflammatory cytokine IL10, and significantly decreased expression of proinflammatory cytokine IL23A in thinner cows (BCS 4) compared with cows calving at BCS 5. Feeding level had a time-dependent effect on gene expression; for example, increased expression of genes involved in leukotriene synthesis (PLA2G4A and ALOX5AP) occurred only at 1 wk postcalving in cows overfed (125% of requirements) precalving compared with those offered 75% of maintenance requirements. Results indicate that precalving body condition and changes in prepartum energy lead to altered gene expression of circulating neutrophils, highlighting the importance of transition cow nutrition for peripartum health.


Subject(s)
Neutrophils/immunology , Peripartum Period , Animals , Cattle , Female , Lactation , Milk , Postpartum Period , Pregnancy
5.
J Dairy Sci ; 99(9): 7661-7668, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27320663

ABSTRACT

Biomarkers that identify prepathological disease could enhance preventive management, improve animal health and productivity, and reduce costs. Circulating extracellular vesicles, particularly exosomes, are considered to be long-distance, intercellular communication systems in human medicine. Exosomes provide tissue-specific messages of functional state and can alter the cellular activity of recipient tissues through their protein and microRNA content. We hypothesized that exosomes circulating in the blood of cows during early lactation would contain proteins representative of the metabolic state of important tissues, such as liver, which play integral roles in regulating the physiology of cows postpartum. From a total of 150 cows of known metabolic phenotype, 10 cows were selected with high (n=5; high risk) and low (n=5; low risk) concentrations of nonesterified fatty acids, ß-hydroxybutyrate, and liver triacylglycerol during wk 1 and 2 after calving. Exosomes were extracted from blood on the day of calving (d 0) and postcalving at wk 1 and wk 4, and their protein composition was determined by mass spectroscopy. Extracellular vesicle protein concentration and the number of exosome vesicles were not affected by risk category; however, the exosome protein cargo differed between the groups, with proteins at each time point identified as being unique to the high- and low-risk groups. The proteins α-2 macroglobulin, fibrinogen, and oncoprotein-induced transcript 3 were unique to the high-risk cows on d 0 and have been associated with metabolic syndrome and liver function in humans. Their presence may indicate a more severe inflammatory state and a greater degree of liver dysfunction in the high-risk cows than in the low-risk cows, consistent with the high-risk cows' greater plasma ß-hydroxybutyrate and liver triacylglycerol concentrations. The commonly shared proteins and those unique to the low-risk category indicate a role for exosomes in immune function. The data provide preliminary evidence of a potential role for exosomes in the immune function in transition dairy cows and exosomal protein cargo as biomarkers of metabolic state.


Subject(s)
3-Hydroxybutyric Acid/blood , Cattle/physiology , Exosomes/physiology , Fatty Acids, Nonesterified/blood , Triglycerides/metabolism , Animals , Female , Lactation , Liver/metabolism
6.
J Dairy Sci ; 99(8): 6470-6483, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27179873

ABSTRACT

Extensive metabolic and physiologic changes occur during the peripartum, concurrent with a high incidence of infectious disease. Immune dysfunction is a likely contributor to the increased risk of disease at this time. Studies using high-yielding, total mixed ration-fed cows have indicated that neutrophil function is perturbed over the transition period; however, this reported dysfunction has yet to be investigated in moderate-yielding, grazing dairy cows. Therefore, we investigated changes in the expression of genes involved in neutrophil function. Blood was collected from cows at 5 time points over the transition period: precalving (-1wk; n=46), day of calving (d 0; n=46), and postcalving at wk 1 (n=46), wk 2 (n=45), and wk 4 (n=43). Neutrophils were isolated by differential centrifugation and gene expression was investigated. Quantitative reverse transcriptase PCR with custom-designed primer pairs and Roche Universal Probe Library (Roche, Basel, Switzerland) chemistry, combined with microfluidics integrated fluidic circuit chips (96.96 Dynamic Array, San Francisco, CA) were used to investigate the expression of 78 genes involved in neutrophil function and 18 endogenous control genes. Statistical significance between time points was determined using a repeated measures ANOVA. Genes that were differentially expressed over the transition period included those involved in neutrophil adhesion (SELL, ITGB2, and ITGBX), mediation of the immune response (TLR4, HLA-DRA, and CXCR2), maturation, cell cycle progression, apoptosis (MCL1, BCL2, FASLG, and RIPK1), and control of gene expression (PPARG, PPARD, and STAT3). We noted reduced gene expression of proinflammatory cytokines (IFNG, TNF, IL12, and CCL2) on the day of calving, whereas anti-inflammatory cytokine gene expression (IL10) was upregulated. Increased gene expression of antimicrobial peptides (BNBD4, DEFB10, and DEFB1) occurred on the day of calving. Collectively, transcription profiles are indicative of functional changes in neutrophils of grazing dairy cows over the transition period and align with studies in cows of conventional total mixed ration systems. This altered function may predispose cows to disease over the transition period and is likely to be a natural change in function due to parturition.


Subject(s)
Neutrophils/immunology , Parturition , Animals , Cattle , Cytokines/metabolism , Diet/veterinary , Female , Gene Expression , Lactation , Peripartum Period
7.
J Anim Physiol Anim Nutr (Berl) ; 98(2): 209-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23441910

ABSTRACT

The aim of this study was to determine whether orally ingested ovine serum IgG partly resists digestion in the growing rat. Fifteen Sprague-Dawley male rats were allocated to one of three diets for a 3-week study: a control diet (CON) and two test diets containing either freeze-dried ovine serum immunoglobulin (FDOI) or inactivated ovine serum immunoglobulin (IOI). Samples of stomach chyme and intestinal digesta from the ad libitum-fed rats were subjected to ELISA and Western blot analysis. Amounts of intact ovine IgG for the FDOI diet were found to be 13.9, 20.0, 34.1, 13.0 and 36.9 µg in the total wet digesta from the stomach chyme, duodenal, jejunal, ileal and colonic digesta respectively. Qualitative detection by Western blot revealed the presence of intact ovine serum IgG with a ~150 kDa MW. This was detected in all of the gut segments (stomach chyme, duodenal, jejunal, ileal and colonic digesta) for growing rats fed the FDOI diet. No ovine IgG was detected in the chyme or digesta from rats fed the CON or the IOI diets. Ovine serum IgG partly resisted digestion in the growing rat fed the FDOI diet and was found throughout the digestive tract. These results provide a basis to explain the reported biological effects of orally administered immunoglobulin.


Subject(s)
Animal Feed/analysis , Gastrointestinal Tract/metabolism , Immunoglobulin G/metabolism , Sheep , Animal Nutritional Physiological Phenomena , Animals , Diet , Immunoglobulin G/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Species Specificity
9.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32139576

ABSTRACT

The genome of New Zealand Mycoplasma ovipneumoniae isolate 90 was sequenced and assembled using an Illumina MiSeq system and combining the built-in Geneious de novo and Velvet de novo assemblers. The 1,031,345-bp-long genome harbored 711 genes with a coding percentage of 86.6.

10.
Genet Mol Res ; 5(4): 581-608, 2006 Oct 31.
Article in English | MEDLINE | ID: mdl-17183471

ABSTRACT

The major histocompatibility complex (MHC) in sheep, Ovar-Mhc, is poorly characterised, when compared to other domestic animals. However, its basic structure is similar to that of other mammals, comprising class I, II and III regions. Currently, there is evidence for the existence of four class I loci. The class II region is better characterised, with evidence of one DRA, four DRB (one coding and three non-coding), one DQA1, two DQA2, and one each of the DQB1, DQB2, DNA, DOB, DYA, DYB, DMA, and DMB genes in the region. The class III region is the least characterised, with the known presence of complement cascade (C4, C2 and Bf), TNFalpha and CYP21 genes. Products of the class I and II genes, MHC molecules, play a pivotal role in antigen presentation required for eliciting immune responses against invading pathogens. Several studies have focused on polymorphisms of Ovar-Mhc genes and their association with disease resistance. However, more research emphasis is needed on characterising the remaining Ovar-Mhc genes and developing simplified and cost-effective methods to score gene polymorphisms. Haplotype screening, employing multiple markers rather than single genes, would be more meaningful in MHC-disease association studies, as it is well known that most of the MHC loci are tightly linked, exhibiting very little recombination. This review summarises the current knowledge of the structure of Ovar-Mhc and polymorphisms of genes located in the complex.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Immunity, Innate/genetics , Polymorphism, Genetic/genetics , Sheep Diseases/genetics , Animals , HLA Antigens/genetics , Haplotypes/genetics , Humans , Mice , Sheep , Sheep Diseases/immunology , Structure-Activity Relationship
11.
Infect Genet Evol ; 15: 18-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22981926

ABSTRACT

The theory about the Cryptosporidium life cycle predicts genetic diversity of sporozoites within the host. Nevertheless, the Cryptosporidium intra-host genetic diversity is difficult to study using conventional Sanger sequencing or electrophoretic resolution of amplicons, due to the methods' inability to resolve mixtures of templates. We analysed the within-isolate genetic diversity of two Cryptosporidium parvum isolates sharing common descent, by combining the use of Next Generation Sequencing and cloning of PCR amplicons with database searches. The analysis focused on the single-copy 70 kDa heat shock protein (HSP70) and the 60kDa surface glycoprotein (gp60) genes, which allowed any diversity to be ascribed to the presence of a heterogeneous population of sporozoites. The results indicated an unprecedented intra-host genetic diversity, with two HSP70 and 10 gp60 alleles in these isolates, in spite of the initial resolution of one allele per locus using Sanger sequencing. At both loci, the predominant alleles were those initially identified by Sanger sequencing. A significant (p<0.01) overrepresentation of gp60 alleles previously reported in New Zealand was observed. These results further our understanding of the genetic structure of C. parvum populations, and expose the limitations of the use of non-axenic isolates as operational taxonomic units of genetic studies of cryptosporidiosis.


Subject(s)
Cryptosporidium parvum/genetics , Genetic Variation , Base Sequence , Cloning, Molecular , Genes, Protozoan , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Multilocus Sequence Typing , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
12.
N Z Vet J ; 61(6): 349-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23600435

ABSTRACT

AIM: To compare the effects of pre-operatively administered tramadol with those of morphine on electroencephalographic responses to surgery and post-operative pain in dogs undergoing castration. METHODS: Dogs undergoing castration were treated with either pre-operative morphine (0.5 mg/kg S/C, n = 8) or tramadol (3 mg/kg S/C, n = 8). All dogs also received 0.05 mg/kg acepromazine and 0.04 mg/kg atropine S/C in addition to the test analgesic. Anaesthesia was induced with thiopentone administered I/V to effect and maintained with halothane in oxygen. Respiratory rate, heart rate, end-tidal halothane tension (EtHal) and end-tidal CO2 tension (EtCO2) were monitored throughout surgery. Electroencephalograms (EEG) were recorded continuously using a three electrode montage. Median frequency (F50), total power (Ptot) and 95% spectral edge frequency (F95) derived from EEG power spectra recorded before skin incision (baseline) were compared with those recorded during ligation of the spermatic cords of both testicles. Post-operatively, pain was assessed after 1, 3, 6 and 9 h using the short form of the Glasgow composite measure pain scale (CMPS-SF). RESULTS: Dogs premedicated with tramadol had higher mean F50 (12.2 (SD 0.2) Hz) and lower Ptot (130.39 (SD 12.1) µv(2)) compared with those premedicated with morphine (11.5 (SD 0.2) Hz and 161.8 (SD 15.1) µv(2), respectively; p<0.05) during ligation of testicle 1. There were no differences in EEG responses between the two treatment groups during ligation of testicle 2 (p>0.05). The F95 of the EEG did not differ between the two groups during the ligation of either testicle (p > 0.05). Post-operatively, no significant differences in the CMPS-SF score were found between animals premedicated with tramadol and morphine at any time during the post-operative period. No dog required rescue analgesia. CONCLUSION AND CLINICAL RELEVANCE: Tramadol and morphine administered pre-operatively provided a similar degree of post-operative analgesia in male dogs at the doses tested.


Subject(s)
Analgesics, Opioid/pharmacology , Dog Diseases/prevention & control , Morphine/pharmacology , Orchiectomy/veterinary , Pain/veterinary , Tramadol/pharmacology , Animals , Dogs , Male , Morphine/adverse effects , Orchiectomy/adverse effects , Pain/etiology , Pain/prevention & control , Tramadol/adverse effects
13.
N Z Vet J ; 58(5): 237-45, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20927174

ABSTRACT

AIM: To study the association of polymorphisms at five microsatellite loci with immune responses to a killed Mycobacterium avium subsp. paratuberculosis (Map) vaccine. METHODS: Merino sheep (504 vaccinates and 430 unvaccinated controls) from a long-term Johne's vaccine trial undertaken on three different properties in the Central Tablelands of New South Wales, Australia, were genotyped for five microsatellite markers located in three immunologically significant chromosome regions. The marker loci included three from the major histocompatibility complex (MHC), namely DYMS1, OLADRB and SMHCC1; and one each from the solute carrier family 11 member 1 (SLC11A1), OVINRA1, and the interferon-γ (IFN-γ), o(IFN)-γ, gene regions. Associations between immune responses and genetic polymorphisms at the marker loci were examined by analysing both allelic and genotypic effects. RESULTS: The o(IFN)-γ locus had only two alleles, whereas the other four loci exhibited extensive polymorphism, with the number of alleles ranging from 10 (OVINRA1) to 21 (DYMS1), resulting in 30-92 genotypes per locus. Heterozygosities varied between 37% (o(IFN)-γ) and 87% (SMHCC1), while information on polymorphic contents ranged from 0.31 (o(IFN)-γ) to 0.87 (DYMS1). Each of the three properties exhibited unique allelic and genotypic frequencies. Analysis of immune response data revealed strong antibody and IFN-γ responses as early as 2 months post-vaccination. Immune responses in control animals on all three properties remained consistently low, except for slightly elevated IFN-γ responses at a few time-points on two properties, concomitant with exposure to natural infection. Genotype-phenotype association analyses revealed a number of marker genotypes/alleles to be significantly associated with antibody and IFN-γ responses. However, the effects of only five genotypes (one each at DYMS1, OLADRB, SMHCC1, OVINRA1 and o(IFN)-γ) and three alleles (one each at o(IFN)-γ, DYMS1and OLADRB) on IFN-γ responses were consistent across the three properties. CONCLUSION: Considering the significance of IFN-γ responses in protection against Map, it is possible that the genotypes/alleles identified might have a role in protective immune responses to natural Map infections, and further studies are warranted to confirm this.


Subject(s)
Microsatellite Repeats , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/prevention & control , Sheep Diseases/prevention & control , Alleles , Animals , Australia/epidemiology , Female , Genotype , Male , Paratuberculosis/epidemiology , Polymorphism, Genetic , Sheep , Sheep Diseases/genetics , Sheep Diseases/immunology
14.
N Z Vet J ; 54(4): 153-60, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16915336

ABSTRACT

Research on the structure of the ovine major histocompatibility complex (MHC), Ovar-Mhc, and its association with resistance to various diseases in sheep has received increasing attention during recent years. The term 'resistance' is used to denote the capacity of an animal to defend itself against disease or to withstand the effects of a harmful environmental agent. The Ovar-Mhc is poorly characterised when compared to MHCs of other domestic animals. However, its basic structure is similar to that of other animals, comprising Class I, II and III regions. Products of the Class I and II genes, the histocompatibility molecules, are of paramount importance as these present antigens to T-lymphocytes, thereby eliciting immune responses. Several studies have been conducted in sheep on the involvement of MHC genes/antigens in genetic resistance to diseases, the majority being concerned with gastrointestinal nematodes. Studies on resistance to footrot, Johne's disease and bovine leukaemia virus (BLV)-induced leukaemogenesis have also been reported. Genes of all three regions were implicated in the disease association studies. In addition to disease resistance, Ovar-Mhc genes have been found to be associated with traits such as marbling and birthweight. The use of genetic markers from within the Ovar-Mhc may be useful, via marker-assisted selection, for increasing resistance to various diseases provided they do not impact negatively on other economically-important traits. This review summarises current knowledge of the role of Ovar-Mhc in genetic resistance to diseases in sheep.


Subject(s)
Immunity, Innate/genetics , Major Histocompatibility Complex/immunology , Selection, Genetic , Sheep Diseases/genetics , Sheep Diseases/immunology , Animals , Body Composition/genetics , Body Weight/genetics , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL