Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 169(7): 1214-1227.e18, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28622508

ABSTRACT

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.


Subject(s)
Chromosomes/metabolism , Genomic Instability , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , RNA, Small Nuclear/metabolism , Amino Acid Sequence , Chromatin , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein U/chemistry , Humans , Interphase , Models, Molecular , Sequence Alignment , Transcription, Genetic
2.
J Biol Chem ; 297(1): 100791, 2021 07.
Article in English | MEDLINE | ID: mdl-34015334

ABSTRACT

Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.


Subject(s)
Microscopy/methods , Animals , Cell Survival , Fluorescent Dyes/chemistry , Humans , Molecular Dynamics Simulation
3.
EMBO J ; 37(1): 139-159, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29146773

ABSTRACT

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Subject(s)
Fixatives/chemistry , Formaldehyde/chemistry , Glyoxal/chemistry , Immunohistochemistry/methods , Microscopy, Fluorescence/methods , Nerve Tissue Proteins/metabolism , Tissue Fixation/methods , Animals , COS Cells , Chlorocebus aethiops , Drosophila melanogaster , HeLa Cells , Humans , Mice
4.
J Biol Chem ; 294(11): 4188-4201, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30655294

ABSTRACT

Autophagy is an intracellular degradation pathway that transports cytoplasmic material to the lysosome for hydrolysis. It is completed by SNARE-mediated fusion of the autophagosome and endolysosome membranes. This process must be carefully regulated to maintain the organization of the membrane system and prevent mistargeted degradation. As yet, models of autophagosomal fusion have not been verified within a cellular context because of difficulties with assessing protein interactions in situ Here, we used high-resolution fluorescence lifetime imaging (FLIM)-FRET of HeLa cells to identify protein interactions within the spatiotemporal framework of the cell. We show that autophagosomal syntaxin 17 (Stx17) heterotrimerizes with synaptosome-associated protein 29 (SNAP29) and vesicle-associated membrane protein 7 (VAMP7) in situ, highlighting a functional role for VAMP7 in autophagosome clearance that has previously been sidelined in favor of a role for VAMP8. Additionally, we identified multimodal regulation of SNARE assembly by the Sec1/Munc18 (SM) protein VPS33A, mirroring other syntaxin-SM interactions and therefore suggesting a unified model of SM regulation. Contrary to current theoretical models, we found that the Stx17 N-peptide appears to interact in a positionally conserved, but mechanistically divergent manner with VPS33A, providing a late "go, no-go" step for autophagic fusion via a phosphoserine master-switch. Our findings suggest that Stx17 fusion competency is regulated by a phosphosite in its N-peptide, representing a previously unknown regulatory step in mammalian autophagy.


Subject(s)
Autophagy , Qa-SNARE Proteins/metabolism , Vesicular Transport Proteins/metabolism , HeLa Cells , Humans , Optical Imaging , Qa-SNARE Proteins/chemistry , Tumor Cells, Cultured , Vesicular Transport Proteins/chemistry
5.
Chembiochem ; 19(23): 2443-2447, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30212615

ABSTRACT

The tyrosine side chain is amphiphilic leading to significant variations in the surface exposure of tyrosine residues in the folded structure of a native sequence protein. This variability can be exploited to give residue-selective functionalization of a protein substrate by using a highly reactive diazonium group tethered to an agarose-based resin. This novel catch-and-release approach to protein modification has been demonstrated for proteins with accessible tyrosine residues, which are compared with a control group of proteins in which there are no accessible tyrosine residues. MS analysis of the modified proteins showed that functionalization was highly selective, but reactivity was further attenuated by the electrostatic environment of any individual residue. Automated screening of PDB structures allows identification of potential candidates for selective modification by comparison with the accessibility of the tyrosine residue in a benchmark peptide (GYG).


Subject(s)
Proteins/chemistry , Tyrosine/chemistry , Amino Acid Sequence , Aminophenols/chemical synthesis , Aminophenols/chemistry , Diazonium Compounds/chemistry , Ferricyanides/chemistry , Fluoresceins/chemical synthesis , Fluoresceins/chemistry , Oligopeptides/chemistry
6.
Opt Express ; 26(3): 2280-2291, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401768

ABSTRACT

Single-photon avalanche photodiode (SPAD) image sensors offer time-gated photon counting, at high binary frame rates of >100 kFPS and with no readout noise. This makes them well-suited to a range of scientific applications, including microscopy, sensing and quantum optics. However, due to the complex electronics required, the fill factor tends to be significantly lower (< 10%) than that of EMCCD and sCMOS cameras (>90%), whilst the pixel size is typically larger, impacting the sensitivity and practicalities of the SPAD devices. This paper presents the first characterisation of a cylindrical-shaped microlens array applied to a small, 8 micron, pixel SPAD imager. The enhanced fill factor, ≈50% for collimated light, is the highest reported value amongst SPAD sensors with comparable resolution and pixel pitch. We demonstrate the impact of the increased sensitivity in single-molecule localisation microscopy, obtaining a resolution of below 40nm, the best reported figure for a SPAD sensor.

7.
Am J Physiol Renal Physiol ; 312(1): F200-F209, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28069661

ABSTRACT

Renin is the initiator and rate-limiting factor in the renin-angiotensin blood pressure regulation system. Although renin is not exclusively produced in the kidney, in nonmurine species the synthesis and secretion of the active circulatory enzyme is confined almost exclusively to the dense core granules of juxtaglomerular (JG) cells, where prorenin is processed and stored for release via a regulated pathway. Despite its importance, the structural organization and regulation of granules within these cells is not well understood, in part due to the difficulty in culturing primary JG cells in vitro and the lack of appropriate cell lines. We have streamlined the isolation and culture of primary renin-expressing cells suitable for high-speed, high-resolution live imaging using a Percoll gradient-based procedure to purify cells from RenGFP+ transgenic mice. Fibronectin-coated glass coverslips proved optimal for the adhesion of renin-expressing cells and facilitated live cell imaging at the plasma membrane of primary renin cells using total internal reflection fluorescence microscopy (TIRFM). To obtain quantitative data on intracellular function, we stained mixed granule and lysosome populations with Lysotracker Red and stimulated cells using 100 nM isoproterenol. Analysis of membrane-proximal acidic granular organelle dynamics and behavior within renin-expressing cells revealed the existence of two populations of granular organelles with distinct functional responses following isoproterenol stimulation. The application of high-resolution techniques for imaging JG and other specialized kidney cells provides new opportunities for investigating renal cell biology.


Subject(s)
Cytoplasmic Granules/metabolism , Juxtaglomerular Apparatus/metabolism , Renin-Angiotensin System/physiology , Renin/metabolism , Animals , Cells, Cultured , Lysosomes/metabolism , Mice , Microscopy/methods
8.
Angew Chem Int Ed Engl ; 54(13): 3957-61, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25656851

ABSTRACT

A rapidly formed supramolecular polypeptide-DNA hydrogel was prepared and used for in situ multilayer three-dimensional bioprinting for the first time. By alternative deposition of two complementary bio-inks, designed structures can be printed. Based on their healing properties and high mechanical strengths, the printed structures are geometrically uniform without boundaries and can keep their shapes up to the millimeter scale without collapse. 3D cell printing was demonstrated to fabricate live-cell-containing structures with normal cellular functions. Together with the unique properties of biocompatibility, permeability, and biodegradability, the hydrogel becomes an ideal biomaterial for 3D bioprinting to produce designable 3D constructs for applications in tissue engineering.


Subject(s)
Bioprinting/methods , DNA/chemistry , Hydrogels/chemical synthesis , Peptides/chemical synthesis , Biocompatible Materials/chemical synthesis , Cell Physiological Phenomena , Cells/chemistry , Deoxyribonucleases/chemistry , Models, Molecular , Nucleic Acid Conformation , Permeability , Tissue Engineering
9.
J Biol Chem ; 288(7): 5102-13, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23223447

ABSTRACT

Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.


Subject(s)
Munc18 Proteins/metabolism , Animals , Binding Sites , Biological Transport , Biophysics/methods , Cell Line , Cell Membrane/metabolism , Genetic Vectors , Green Fluorescent Proteins/metabolism , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , PC12 Cells , Protein Binding , Rats , SNARE Proteins/metabolism
10.
J Biol Chem ; 285(6): 3965-3972, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19748891

ABSTRACT

In neuronal and hormonal release, regulated exocytosis requires an essential set of proteins: the soluble N-ethylmaleimide sensitive-factor attachment receptor proteins (SNAREs) syntaxin 1, SNAP-25, VAMP, and their regulator, Munc18. Recently, it was found that Munc18-1 can interact with syntaxin 1 through distinct mechanisms: an inhibitory mode enveloping syntaxin (mode 1), sequestering it from SNARE protein interactions, and direct binding to an evolutionarily conserved N-terminal peptide of syntaxin (mode 2/3). The latter interaction has been proposed to control "priming" of the fusion reaction, defined using electrophysiology, but it is unknown how this interaction is regulated, and any dynamic effect at the molecular or vesicular level in cells remains undiscovered. We now show that a phosphorylation site in syntaxin 1 (Ser(14)) regulates the N-terminal interaction with Munc18-1. Probing syntaxin 1 association with Munc18-1, in real-time and in living cells, we found that modification of Ser(14) modulated the dynamics of this interaction, specifically at the plasma membrane. Destabilization of this dynamic interaction enhanced vesicle immobilization at the plasma membrane with a resulting inhibition of exocytosis.


Subject(s)
Munc18 Proteins/metabolism , Secretory Vesicles/metabolism , Syntaxin 1/metabolism , Amino Acid Sequence , Animals , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Exocytosis , Kinetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Molecular Sequence Data , Munc18 Proteins/genetics , PC12 Cells , Phosphorylation , Protein Binding , Rats , Sequence Homology, Amino Acid , Serine/genetics , Serine/metabolism , Syntaxin 1/genetics , Transfection
11.
J Biol Chem ; 285(49): 38141-8, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20801887

ABSTRACT

Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.


Subject(s)
Cell Membrane/metabolism , Membrane Fusion/physiology , Munc18 Proteins/metabolism , Secretory Vesicles/metabolism , Amino Acid Motifs , Animals , Cell Membrane/genetics , Munc18 Proteins/genetics , PC12 Cells , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Rats , SNARE Proteins/genetics , SNARE Proteins/metabolism , Secretory Vesicles/genetics
12.
J Biol Chem ; 285(18): 13535-41, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20093362

ABSTRACT

The spatial distribution of the target (t-)SNARE proteins (syntaxin and SNAP-25) on the plasma membrane has been extensively characterized. However, the protein conformations and interactions of the two t-SNAREs in situ remain poorly defined. By using super-resolution optical techniques and fluorescence lifetime imaging microscopy, we observed that within the t-SNARE clusters syntaxin and SNAP-25 molecules interact, forming two distinct conformations of the t-SNARE binary intermediate. These are spatially segregated on the plasma membrane with each cluster exhibiting predominantly one of the two conformations, representing the two- and three-helical forms previously observed in vitro. We sought to explain why these two t-SNARE intermediate conformations exist in spatially distinct clusters on the plasma membrane. By disrupting plasma membrane lipid order, we found that all of the t-SNARE clusters now adopted a single conformational state corresponding to the three helical t-SNARE intermediates. Together, our results define spatially distinct t-SNARE intermediate states on the plasma membrane and how the conformation adopted can be patterned by the underlying lipid environment.


Subject(s)
Cell Membrane/chemistry , Membrane Lipids/chemistry , Qa-SNARE Proteins/chemistry , Synaptosomal-Associated Protein 25/chemistry , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Membrane Lipids/genetics , Membrane Lipids/metabolism , PC12 Cells , Protein Structure, Quaternary , Protein Structure, Secondary , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Rats , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism
13.
Mol Cancer Res ; 19(2): 274-287, 2021 02.
Article in English | MEDLINE | ID: mdl-33097627

ABSTRACT

Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.


Subject(s)
NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Sequestosome-1 Protein/metabolism , Apoptosis , Autophagy , Cells, Cultured , Humans , Signal Transduction
14.
Cell Mol Neurobiol ; 30(8): 1321-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21046449

ABSTRACT

The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50-60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35-70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.


Subject(s)
Multiprotein Complexes/metabolism , SNARE Proteins/metabolism , Animals , Cell Membrane/metabolism
15.
Cell Mol Neurobiol ; 30(8): 1309-13, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21046456

ABSTRACT

All neurotransmitter and hormone regulated secretory events involve the action of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, syntaxin, SNAP-25, and synaptobrevin. The SNARE proteins interact to form a four alpha-helical complex, involving syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the vesicular membrane, bringing the opposing membranes together, promoting bilayer merger and membrane fusion. The process of regulated secretion is an adaptation of the membrane fusion events which occur at multiple steps throughout the intracellular trafficking pathway, in each case catalyzed by SNARE protein isoforms. At all of these locations, the SNAREs are joined by a member of the Sec1p/Munc18 (SM) protein family which selectively bind to syntaxin isoforms. From their initial identification, the SM proteins were known to be essential for membrane fusion, however, over the intervening decades, deciphering the precise mechanism of action of the SM proteins has proved problematic. Recent studies, investigating the interactions of munc18-1 and syntaxin1, provide an explanation for previous, apparently conflicting, observations yielding a new understanding of their cellular functions.


Subject(s)
Munc18 Proteins/metabolism , Syntaxin 1/metabolism , Animals , Models, Molecular , Munc18 Proteins/chemistry , Protein Binding , Syntaxin 1/chemistry
16.
Biochem J ; 413(3): 479-91, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18452404

ABSTRACT

Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.


Subject(s)
Cysteine/metabolism , Munc18 Proteins/metabolism , Syntaxin 1/metabolism , Amino Acid Sequence , Animals , Cattle , Cell Line , Cell Membrane/metabolism , Computer Simulation , Cysteine/chemistry , Cysteine/genetics , Exocytosis , HeLa Cells , Humans , Microscopy, Confocal , Molecular Sequence Data , Munc18 Proteins/chemistry , Munc18 Proteins/genetics , Nitric Oxide/metabolism , Plasmids/genetics , Protein Binding , SNARE Proteins/metabolism , Sequence Homology, Amino Acid , Syntaxin 1/chemistry , Syntaxin 1/genetics , Thermodynamics
17.
FEBS Lett ; 593(4): 395-405, 2019 02.
Article in English | MEDLINE | ID: mdl-30636036

ABSTRACT

Rearrangements of the actin cytoskeleton are regulated in part by dynamic localised activation and inactivation of Rho family small GTPases. SWAP70 binds to and activates the small GTPase RAC1 as well as binding to filamentous actin and PIP3 . We have developed an encoded biosensor, which uses Forster resonance energy transfer to reveal conformational changes in SWAP70 in live cells. SWAP70 adopts a distinct conformation at the plasma membrane, which in migrating glioma cells is enriched at the leading edge but does not always associate with its PIP3 -dependent translocation to the membrane. This supports a role for SWAP70 in positive feedback activation of RAC1 at sites of filamentous actin, PIP3 and active RAC1.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Glioma/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Pseudopodia/physiology , Actin Cytoskeleton/metabolism , Animals , Biosensing Techniques , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Movement , Fluorescence Resonance Energy Transfer , Gene Expression Regulation, Neoplastic , Humans , Mice , Phosphatidylinositol Phosphates/metabolism , Protein Conformation , Swiss 3T3 Cells , rac1 GTP-Binding Protein/metabolism
18.
Sci Rep ; 9(1): 7713, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118459

ABSTRACT

Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive in vivo in situ measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre. With this platform, photonic measurements of pH and oxygen concentration with high precision in the distal alveolar space of the lung are reported. We demonstrated the phenomenon that high-density deposition of carboxyfluorescein covalently coupled to silica microspheres shows an inverse shift in fluorescence in response to varying pH. This platform delivered fast and accurate measurements (±0.02 pH units and ±0.6 mg/L of oxygen), near instantaneous response time and a flexible architecture for addition of multiple sensors.


Subject(s)
Fiber Optic Technology/methods , Optical Fibers , Pulmonary Alveoli/diagnostic imaging , Animals , Bronchoscopy , Female , Fluoresceins/analysis , Fluorescent Dyes/analysis , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microspheres , Miniaturization , Oxygen , Rhodamines/analysis , Sheep , Silicon Dioxide
19.
Microsc Res Tech ; 70(5): 420-5, 2007 May.
Article in English | MEDLINE | ID: mdl-17394229

ABSTRACT

Recent developments in cellular imaging now permit the minimally invasive study of protein interactions in living cells. These advances are of enormous interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Up until recently, all protein interactions had to be determined in vitro using biochemical approaches. This biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with spatial resolution. More recent developments in TCSPC imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. Here, we discuss some findings we have made along the way which may be useful for physiologists to consider.


Subject(s)
Biology/methods , Diagnostic Imaging/methods , Proteins/metabolism , Fluorescence , Protein Binding , Time Factors
20.
Sci Rep ; 7: 40375, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071717

ABSTRACT

The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of "free" Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their "free" counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age.


Subject(s)
Cataract/diagnosis , Cataract/genetics , Crystallins/genetics , Protein Processing, Post-Translational/genetics , Animals , Cataract/pathology , Chromatography, High Pressure Liquid , Crystallins/isolation & purification , Fluorescence , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Mass Spectrometry , Spectrometry, Fluorescence , Swine , Tryptophan/chemistry , Tryptophan/isolation & purification , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL