Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Affiliation country
Publication year range
1.
Geophys Res Lett ; 46(10): 5075-5082, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31423033

ABSTRACT

Lobate stony landforms occur on steep slopes at high latitudes on Mars. We demonstrate active boulder movement at seven such sites. Submeter-scale boulders frequently move distances of a few meters. The movement is concentrated in the vicinity of the lobate landforms but also occurs on other slopes. This provides evidence for a newly discovered, common style of activity on Mars, which may play an important role in slope degradation. It also opens the possibility that the lobate features are currently forming in the absence of significant volumes of liquid water.

2.
Sci Adv ; 10(26): eadk7615, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941463

ABSTRACT

Seismic observations of impacts on Mars indicate a higher impact flux than previously measured. Using six confirmed seismic impact detections near the NASA InSight lander and two distant large impacts, we calculate appropriate scalings to compare these rates with lunar-based chronology models. We also update the impact rate from orbital observations using the most recent catalog of new craters on Mars. The snapshot of the current impact rate at Mars recorded seismically is higher than that found using orbital detections alone. The measured rates differ between a factor of 2 and 10, depending on the diameter, although the sample size of seismically detected impacts is small. The close timing of the two largest new impacts found on Mars in the past few decades indicates either a heightened impact rate or a low-probability temporal coincidence, perhaps representing recent fragmentation of a parent body. We conclude that seismic methods of detecting current impacts offer a more complete dataset than orbital imaging.

3.
J Geophys Res Planets ; 126(8): e2021JE006876, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35845553

ABSTRACT

Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.

4.
Icarus ; 3432020 Jun.
Article in English | MEDLINE | ID: mdl-34211190

ABSTRACT

Recurring Slope Lineae (RSL) on Mars have been enigmatic since their discovery; their behavior resembles a seeping liquid but sources of water remain puzzling. This work demonstrates that the properties of RSL are consistent with observed behaviors of Martian and terrestrial aeolian processes. Specifically, RSL are well-explained as flows of sand that remove a thin coating of dust. Observed RSL properties are supportive of or consistent with this model, which requires no liquid water or other exotic processes, but rather indicates seasonal aeolian behavior. These settings and behaviors resemble features observed by rovers and also explain the occurrence of many slope lineae on Mars that do not meet the strict definition of RSL. This indicates that RSL can be explained simply as aeolian features. Other processes may add complexities just as they could modify the behavior of any sand dune.

5.
Nat Geosci ; 13: 473-476, 2020 Jul.
Article in English | MEDLINE | ID: mdl-34221112

ABSTRACT

Mars has several different types of slope feature that resemble aqueous flows. However, current cold, dry conditions are inimical to liquid water, resulting in uncertainty about its role in modern surface processes. Dark slope streaks were among the first distinctive young slope features to be identified on Mars and the first with activity seen in orbital images. They form markings on steep slopes that can persist for decades, and the role of water in their formation remains under debate. Here I analyze the geomorphic features of new slope streaks using high-resolution orbital images. Comparison of before-and-after images reveals how the streak formation process affects the surface and provides information about the cause. These observations demonstrate that slope streaks erode and deposit material in some instances. They also reveal that streaks can jump slopes and may be erosive very near their termini. These observations support a formation model where dark slope streaks form as ground-hugging, low-density avalanches of dry surface dust. Such streaks need not be treated as Special Regions for planetary protection.

6.
Icarus ; 321: 346-357, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-34316081

ABSTRACT

Both the northern and southern arms of Kasei Valles are occupied by platy-ridged flood lavas. We have mapped these flows and examined their morphology to better understand their emplacement. The lavas were emplaced as high-flux, turbulent flows (exceeding 106 m3 s-1). Lava in southern Kasei Valles can be traced back up onto the Tharsis rise, which is also the likely source of lavas in the northern arm. These eruptions were similar to, but somewhat smaller than, the Athabasca Valles flood lava in Elysium Planitia, with estimated volumes of >1200 km3 here and 5000 km3 in Athabasca Valles. The flood lavas in both Kasei and Athabasca Valles have evidence for distal inflation as well as widespread drainage or volume loss in medial areas; this may be an important characteristic of many large, recent Martian eruptions. Despite their great size and flux, the Kasei Valles flood lavas are only a late modification to the valley system capable of only modest local erosion. The more vigorous Athabasca Valles lava may have been capable of somewhat more erosion in its smaller valley system.

7.
Science ; 359(6372): 199-201, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29326269

ABSTRACT

Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars' high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.


Subject(s)
Extraterrestrial Environment , Ice Cover , Mars
8.
J Geophys Res Planets ; 120(11): 1800-1819, 2015 Nov.
Article in English | MEDLINE | ID: mdl-29082120

ABSTRACT

The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. [2005] model of thermal erosion by lava has been applied to what we term "proximal Athabasca," the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3 and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0-65 vol% bubbles. The largest erosion depths of ~3.8-7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol% ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30-50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35-100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

9.
Science ; 333(6043): 740-3, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21817049

ABSTRACT

Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.


Subject(s)
Mars , Water , Extraterrestrial Environment , Salts , Seasons , Spacecraft , Temperature
10.
Science ; 325(5948): 1674-6, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19779195

ABSTRACT

New impact craters at five sites in the martian mid-latitudes excavated material from depths of decimeters that has a brightness and color indicative of water ice. Near-infrared spectra of the largest example confirm this composition, and repeated imaging showed fading over several months, as expected for sublimating ice. Thermal models of one site show that millimeters of sublimation occurred during this fading period, indicating clean ice rather than ice in soil pores. Our derived ice-table depths are consistent with models using higher long-term average atmospheric water vapor content than present values. Craters at most of these sites may have excavated completely through this clean ice, probing the ice table to previously unsampled depths of meters and revealing substantial heterogeneity in the vertical distribution of the ice itself.


Subject(s)
Ice , Mars , Extraterrestrial Environment , Meteoroids , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL