Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Biochemistry ; 61(16): 1643-1664, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862020

ABSTRACT

Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).


Subject(s)
Serine Endopeptidases , Serine , Carboxypeptidases , Crystallography, X-Ray , Humans , Models, Molecular , Serine Endopeptidases/chemistry , Subtilisins
2.
Bioorg Med Chem ; 26(13): 3837-3844, 2018 07 30.
Article in English | MEDLINE | ID: mdl-29983285

ABSTRACT

Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93 ±â€¯0.29 µM for Plm II; Ki, 1.99 ±â€¯0.05 µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84 ±â€¯0.08 µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27 ±â€¯0.95 µM for 10f; IC50, 3.11 ±â€¯0.65 µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35 ±â€¯0.85 µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.


Subject(s)
Antimalarials/chemical synthesis , Aspartic Acid Endopeptidases/antagonists & inhibitors , Ethylamines/chemistry , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Cell Survival/drug effects , Chlorocebus aethiops , Drug Design , Ethylamines/metabolism , Ethylamines/pharmacology , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Structure, Tertiary , Structure-Activity Relationship , Vero Cells
3.
Biochemistry ; 56(17): 2304-2314, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28346784

ABSTRACT

The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.


Subject(s)
Bacterial Proteins/metabolism , Models, Molecular , Mycobacterium tuberculosis/enzymology , Serine Proteases/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Circular Dichroism , Crystallography, X-Ray , Enzyme Stability , Methionine/chemistry , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Selenomethionine/chemistry , Serine Proteases/chemistry , Serine Proteases/genetics , Structural Homology, Protein , Substrate Specificity
4.
J Biol Chem ; 291(43): 22741-22756, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27576689

ABSTRACT

Multidrug resistance to current Food and Drug Administration-approved HIV-1 protease (PR) inhibitors drives the need to understand the fundamental mechanisms of how drug pressure-selected mutations, which are oftentimes natural polymorphisms, elicit their effect on enzyme function and resistance. Here, the impacts of the hinge-region natural polymorphism at residue 35, glutamate to aspartate (E35D), alone and in conjunction with residue 57, arginine to lysine (R57K), are characterized with the goal of understanding how altered salt bridge interactions between the hinge and flap regions are associated with changes in structure, motional dynamics, conformational sampling, kinetic parameters, and inhibitor affinity. The combined results reveal that the single E35D substitution leads to diminished salt bridge interactions between residues 35 and 57 and gives rise to the stabilization of open-like conformational states with overall increased backbone dynamics. In HIV-1 PR constructs where sites 35 and 57 are both mutated (e.g. E35D and R57K), x-ray structures reveal an altered network of interactions that replace the salt bridge thus stabilizing the structural integrity between the flap and hinge regions. Despite the altered conformational sampling and dynamics when the salt bridge is disrupted, enzyme kinetic parameters and inhibition constants are similar to those obtained for subtype B PR. Results demonstrate that these hinge-region natural polymorphisms, which may arise as drug pressure secondary mutations, alter protein dynamics and the conformational landscape, which are important thermodynamic parameters to consider for development of inhibitors that target for non-subtype B PR.


Subject(s)
Evolution, Molecular , HIV Protease , HIV-1 , Molecular Dynamics Simulation , Mutation, Missense , Polymorphism, Genetic , Amino Acid Substitution , Crystallography, X-Ray , HIV Protease/chemistry , HIV Protease/genetics , HIV-1/enzymology , HIV-1/genetics , Humans
5.
PLoS Pathog ; 10(5): e1004132, 2014 May.
Article in English | MEDLINE | ID: mdl-24830429

ABSTRACT

Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.


Subject(s)
Bacterial Proteins/physiology , Chaperonin 60/metabolism , Macrophages/immunology , Macrophages/metabolism , Mycobacterium tuberculosis/enzymology , Serine Endopeptidases/physiology , Serine Proteases/physiology , Animals , Bacterial Proteins/metabolism , Cells, Cultured , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Macrophage Activation , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Protein Binding , Protein Multimerization , Proteolysis , Serine Endopeptidases/metabolism , Serine Proteases/metabolism
6.
Biochemistry ; 54(2): 422-33, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25513833

ABSTRACT

HIV drug resistance continues to emerge; consequently, there is an urgent need to develop next generation antiretroviral therapeutics.1 Here we report on the structural and kinetic effects of an HIV protease drug resistant variant with the double mutations Gly48Thr and Leu89Met (PRG48T/L89M), without the stabilizing mutations Gln7Lys, Leu33Ile, and Leu63Ile. Kinetic analyses reveal that PRG48T/L89M and PRWT share nearly identical Michaelis-Menten parameters; however, PRG48T/L89M exhibits weaker binding for IDV (41-fold), SQV (18-fold), APV (15-fold), and NFV (9-fold) relative to PRWT. A 1.9 Å resolution crystal structure was solved for PRG48T/L89M bound with saquinavir (PRG48T/L89M-SQV) and compared to the crystal structure of PRWT bound with saquinavir (PRWT-SQV). PRG48T/L89M-SQV has an enlarged active site resulting in the loss of a hydrogen bond in the S3 subsite from Gly48 to P3 of SQV, as well as less favorable hydrophobic packing interactions between P1 Phe of SQV and the S1 subsite. PRG48T/L89M-SQV assumes a more open conformation relative to PRWT-SQV, as illustrated by the downward displacement of the fulcrum and elbows and weaker interatomic flap interactions. We also show that the Leu89Met mutation disrupts the hydrophobic sliding mechanism by causing a redistribution of van der Waals interactions in the hydrophobic core in PRG48T/L89M-SQV. Our mechanism for PRG48T/L89M-SQV drug resistance proposes that a defective hydrophobic sliding mechanism results in modified conformational dynamics of the protease. As a consequence, the protease is unable to achieve a fully closed conformation that results in an expanded active site and weaker inhibitor binding.


Subject(s)
Drug Resistance, Viral , HIV Infections/virology , HIV Protease Inhibitors/pharmacology , HIV Protease/genetics , HIV-1/genetics , Saquinavir/pharmacology , Catalytic Domain , Crystallography, X-Ray , HIV Infections/drug therapy , HIV Protease/chemistry , HIV Protease/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis , Mutation , Protein Conformation
7.
J Biol Chem ; 289(24): 17203-14, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24742668

ABSTRACT

HIV-1 protease is an essential enzyme for viral particle maturation and is a target in the fight against HIV-1 infection worldwide. Several natural polymorphisms are also associated with drug resistance. Here, we utilized both pulsed electron double resonance, also called double electron-electron resonance, and NMR (15)N relaxation measurements to characterize equilibrium conformational sampling and backbone dynamics of an HIV-1 protease construct containing four specific natural polymorphisms commonly found in subtypes A, F, and CRF_01 A/E. Results show enhanced backbone dynamics, particularly in the flap region, and the persistence of a novel conformational ensemble that we hypothesize is an alternative flap orientation of a curled open state or an asymmetric configuration when interacting with inhibitors.


Subject(s)
Catalytic Domain , HIV Protease/chemistry , Polymorphism, Single Nucleotide , Amino Acid Sequence , HIV Protease/genetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation, Missense
9.
Biochemistry ; 52(19): 3278-88, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23566104

ABSTRACT

Enzyme targets in rapidly replicating systems, such as retroviruses, commonly respond to drug-selective pressure with mutations arising in the active site pocket that limit inhibitor effectiveness by introducing steric hindrance or by eliminating essential molecular interactions. However, these primary mutations are disposed to compromising pathogenic fitness. Emerging secondary mutations, which are often found outside of the binding cavity, may or can restore fitness while maintaining drug resistance. The accumulated drug pressure selected mutations could have an indirect effect in the development of resistance, such as altering protein flexibility or the dynamics of protein-ligand interactions. Here, we show that accumulation of mutations in a drug-resistant HIV-1 protease (HIV-1 PR) variant, D30N/M36I/A71V, changes the fractional occupancy of the equilibrium conformational sampling ensemble. Correlations are made among populations of the conformational states, namely, closed-like, semiopen, and open-like, with inhibition constants, as well as kinetic parameters. Mutations that stabilize a closed-like conformation correlate with enzymes of lowered activity and with higher affinity for inhibitors, which is corroborated by a further increase in the fractional occupancy of the closed state upon addition of inhibitor or substrate-mimic. Cross-resistance is found to correlate with combinations of mutations that increase the population of the open-like conformations at the expense of the closed-like state while retaining native-like occupancy of the semiopen population. These correlations suggest that at least three states are required in the conformational sampling model to establish the emergence of drug resistance in HIV-1 PR. More importantly, these results shed light on a possible mechanism whereby mutations combine to impart drug resistance while maintaining catalytic activity.


Subject(s)
HIV Protease/chemistry , HIV-1/drug effects , HIV-1/enzymology , Drug Resistance, Viral/genetics , Electron Spin Resonance Spectroscopy , Enzyme Stability/genetics , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , Humans , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Thermodynamics
10.
Bioorg Med Chem Lett ; 22(18): 5915-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22884991

ABSTRACT

We report the discovery of new potent inhibitors of the growth of Plasmodium falciparum chloroquine (CQ)-resistant W2 strain. These compounds were designed using the double drug approach by introducing a residue able to enhance the accumulation of plasmepsins inhibitors into the food vacuole. Some of the molecules were more active than CQ against CQ-resistant strain and showed good selectivity against cathepsin D.


Subject(s)
Amino Acids/pharmacology , Aminoquinolines/pharmacology , Antimalarials/pharmacology , Cathepsin D/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Amino Acids/chemistry , Aminoquinolines/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cathepsin D/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
11.
Cell Mol Life Sci ; 67(6): 1005-15, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20043183

ABSTRACT

Catestatin, an endogenous peptide derived from bovine chromogranin A, and its active domain cateslytin display powerful antimicrobial activities. We have tested the activities of catestatin and other related peptides on the growth of Plasmodium falciparum in vitro. Catestatin inhibits growth of the chloroquine-sensitive strain of P. falciparum 3D7, exhibiting 88% inhibition at 20 microM. A similar partial inhibition of parasite growth was observed for the chloroquine-resistant strain, 7G8 (64%,) and the multidrug-resistant strain, W2 (62%). In the presence of parasite-specific lactate dehydrogenase, a specific protein-protein interaction between catestatin and plasmepsin II precursor was demonstrated. In addition, catestatin partially inhibited the parasite-specific proteases plasmepsin in vitro. A specific interaction between catestatin and plasmepsins II and IV from P. falciparum and plasmepsin IV from the three remaining species of Plasmodium known to infect man was observed, suggesting a catestatin-induced reduction in availability of nutrients for protein synthesis in the parasite.


Subject(s)
Chromogranin A/pharmacology , Peptide Fragments/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cattle , Chromogranin A/chemical synthesis , Chromogranin A/chemistry , Dose-Response Relationship, Drug , L-Lactate Dehydrogenase/antagonists & inhibitors , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Structure-Activity Relationship
12.
J AIDS Clin Res ; 12(5)2021.
Article in English | MEDLINE | ID: mdl-34950525

ABSTRACT

Therapeutic pressure by protease inhibitors (PIs) contributes to accumulation of mutations in the HIV type 1 (HIV-1) protease (PR) leading to development of drug resistance with subsequent therapy failure. Current PIs target the active site of PR in a competitive manner. Identification of molecules that exploit non-active site mechanisms of inhibition is essential to overcome resistance to current PIs. Potential non-active site HIV-1 protease (PR) inhibitors (PI) were identified by in silico screening of almost 140,000 molecules targeting the hinge region of PR. Inhibitory activity of best docking compounds was tested in an in vitro PR inhibition biochemical assay. Five compounds inhibited PR from multiple HIV-1 sub-types in vitro and reduced replicative capacity by PI-sensitive or multi-PI resistant HIV-1 variants in human cells ex vivo. Antiviral activity was boosted when combined with Ritonavir, potentially diminishing development of drug resistance, while providing effective treatment for drug resistant HIV-1 variants.

13.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 233-42, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20179334

ABSTRACT

The crystal structure of the unbound form of HIV-1 subtype A protease (PR) has been determined to 1.7 A resolution and refined as a homodimer in the hexagonal space group P6(1) to an R(cryst) of 20.5%. The structure is similar in overall shape and fold to the previously determined subtype B, C and F PRs. The major differences lie in the conformation of the flap region. The flaps in the crystal structures of the unbound subtype B and C PRs, which were crystallized in tetragonal space groups, are either semi-open or wide open. In the present structure of subtype A PR the flaps are found in the closed position, a conformation that would be more anticipated in the structure of HIV protease complexed with an inhibitor. The amino-acid differences between the subtypes and their respective crystal space groups are discussed in terms of the differences in the flap conformations.


Subject(s)
HIV Protease/chemistry , HIV-1/enzymology , Amino Acid Sequence , Crystallography, X-Ray , HIV Protease/metabolism , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
14.
Biochemistry ; 48(19): 4086-99, 2009 May 19.
Article in English | MEDLINE | ID: mdl-19271776

ABSTRACT

A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in Escherichia coli. The automaturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally occurring form isolated from parasites. The S3-S3' subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. On the basis of the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 A structure of the PfPM2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1-6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Enzyme Inhibitors/chemistry , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/isolation & purification , Binding Sites/genetics , Catalysis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrogen-Ion Concentration , Kinetics , Malaria, Falciparum/enzymology , Malaria, Falciparum/genetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Renaturation , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Solubility , Structure-Activity Relationship , Substrate Specificity/genetics
15.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 3): 294-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19237752

ABSTRACT

The carboxylate atoms of the two catalytic aspartic acid residues in aspartic proteases are nearly coplanar and in the uncomplexed form share an in-plane nucleophilic water molecule that is central to the mechanism of these enzymes. This note reports that while reviewing the electron-density maps derived from the deposited data for uncomplexed plasmepsin II from Plasmodium falciparum [Asojo et al. (2003), J. Mol. Biol. 327, 173-181; PDB code 1lf4], it was discovered that the aspartic acid residues in this structure should in fact be distinctly noncoplanar. The crystallographic model from the deposited coordinates has been re-refined against the 1.9 A resolution published diffraction data to an R(cryst) of 21.2% and an R(free) of 22.2%. The catalytic water molecule is present, but the plane of the carboxylate group of Asp214 is rotated by 66 degrees from its original position.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Animals , Catalysis , Catalytic Domain , Crystallography, X-Ray , Electrons , Hydrogen Bonding , Models, Molecular , Protein Conformation , Water/chemistry
16.
J Am Chem Soc ; 131(41): 14650-1, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19788299

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) protease plays a fundamental role in the maturation and life cycle of the retrovirus HIV-1, as it functions in regulating post-translational processing of the viral polyproteins gag and gag-pol; thus, it is a key target of AIDS antiviral therapy. Accessibility of substrate to the active site is mediated by two flaps, which must undergo a large conformational change from an open to a closed conformation during substrate binding and catalysis. The electron paramagnetic resonance (EPR) method of site-directed spin labeling (SDSL) with double electron-electron resonance (DEER) spectroscopy was utilized to monitor the conformations of the flaps in apo HIV-1 protease (HIV-1PR), subtypes B, C, and F, CRF01_A/E, and patient isolates V6 and MDR 769. The distance distribution profiles obtained from analysis of the dipolar modulated echo curves were reconstructed to yield a set of Gaussian-shaped populations, which provide an analysis of the flap conformations sampled. The relative percentages of each conformer population described as "tucked/curled", "closed", "semi-open", and "wide-open" were determined and compared for various constructs. The results and analyses show that sequence variations among subtypes, CRFs, and patient isolates of apo HIV-1PR alter the average flap conformation in a way that can be understood as inducing shifts in the relative populations, or conformational sampling, of the previously described four conformations for HIV-1PR.


Subject(s)
HIV Protease/chemistry , HIV Protease/genetics , Polymorphism, Genetic , Catalytic Domain , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular
17.
Bioorg Med Chem ; 17(16): 5933-49, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19635672

ABSTRACT

The impact of moving the P1 side-chain from the beta-position to the alpha-position in norstatine-containing plasmepsin inhibitors was investigated, generating two new classes of tertiary alcohol-comprising alpha-benzylnorstatines and alpha-phenylnorstatines. Twelve alpha-substituted norstatines were designed, synthesized and evaluated for their inhibitory potencies against plasmepsin II and the plasmepsin IV orthologues (PM4) present in the digestive vacuole of all four Plasmodium species causing malaria in man. New synthetic routes were developed for producing the desired alpha-substituted norstatines as pure stereoisomers. The best compounds provided K(i) values in the nanomolar range for all PM4, with a best value of 110nM in PM4 from Plasmodium ovale. In addition, excellent selectivity over the closely related human aspartic protease Cathepsin D was achieved. The loss of affinity to Plasmodium falciparum PM4, which was experienced upon the move of the P1 substituent, was rationalized by the calculation of inhibitor-protein binding affinities using the linear interaction energy method (LIE).


Subject(s)
Aminocaproates/chemistry , Antimalarials/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Aminocaproates/chemical synthesis , Aminocaproates/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Computer Simulation , Humans , Plasmodium/drug effects , Plasmodium/enzymology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protozoan Proteins/metabolism , Stereoisomerism , Thermodynamics
18.
Protein Pept Lett ; 31(1): 2, 2024.
Article in English | MEDLINE | ID: mdl-38444252
19.
ACS Infect Dis ; 5(2): 184-198, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30554511

ABSTRACT

The eradication of malaria remains challenging due to the complex life cycle of Plasmodium and the rapid emergence of drug-resistant forms of Plasmodium falciparum and Plasmodium vivax. New, effective, and inexpensive antimalarials against multiple life stages of the parasite are urgently needed to combat the spread of malaria. Here, we synthesized a set of novel hydroxyethylamines and investigated their activities in vitro and in vivo. All of the compounds tested had an inhibitory effect on the blood stage of P. falciparum at submicromolar concentrations, with the best showing 50% inhibitory concentrations (IC50) of around 500 nM against drug-resistant P. falciparum parasites. These compounds showed inhibitory actions against plasmepsins, a family of malarial aspartyl proteases, and exhibited a marked killing effect on blood stage Plasmodium. In chloroquine-resistant Plasmodium berghei and P. berghei ANKA infected mouse models, treating mice with both compounds led to a significant decrease in blood parasite load. Importantly, two of the compounds displayed an inhibitory effect on the gametocyte stages (III-V) of P. falciparum in culture and the liver-stage infection of P. berghei both in in vitro and in vivo. Altogether, our findings suggest that fast-acting hydroxyethylamine-phthalimide analogs targeting multiple life stages of the parasite could be a valuable chemical lead for the development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/metabolism , Ethylamines/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemical synthesis , Chloroquine/analogs & derivatives , Drug Discovery , Ethylamines/chemical synthesis , Inhibitory Concentration 50 , Life Cycle Stages , Mice , Phthalimides/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/enzymology
20.
J Med Chem ; 51(4): 852-60, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18215016

ABSTRACT

In our quest for HIV-1 protease inhibitors that are not affected by the V82A resistance mutation, we have synthesized and tested a second generation set of C2-symmetric HIV-1 protease inhibitors that contain a cyclohexane group at P1 and/or P1'. The binding affinity results indicate that these compounds have an improved response to the appearance of the V82A mutation than the parent compound. The X-ray structure of one of these compounds with the V82A HIV-1 PR variant provides the structural rationale for the better resistance profile of these compounds. Moreover, scrutiny of the X-ray structure suggests that the ring of the Cha side chain might be in a boat rather than in the chair conformation, a result supported by molecular dynamics simulations.


Subject(s)
Cyclohexanes/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , HIV Protease/chemistry , HIV-1/enzymology , Crystallography, X-Ray , Cyclohexanes/chemistry , Drug Design , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease Inhibitors/chemistry , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL