Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Hum Genet ; 93(4): 607-19, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24094742

ABSTRACT

Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes.


Subject(s)
Child Development Disorders, Pervasive/genetics , DNA Copy Number Variations , Exome , Autophagy/genetics , Base Sequence , Case-Control Studies , Child , Exons , Gene Deletion , Genetic Predisposition to Disease , Humans , Molecular Sequence Data , Sequence Analysis, DNA/methods
2.
Cancers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398085

ABSTRACT

The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells' invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties with cell morphology adaptation and the molecular mechanisms underlying epithelial-to-mesenchymal (EMT)-like phenotype switching. We found that melanoma cell stiffness reduction was systematically associated with the acquisition of invasive properties in cutaneous melanoma cell lines, human skin reconstructs, and Medaka fish developing spontaneous MAP-kinase-induced melanomas. We observed a systematic correlation of stiffness modulation with cell morphological changes towards mesenchymal characteristic gains. We accordingly found that inducing melanoma EMT switching by overexpressing the ZEB1 transcription factor, a major regulator of melanoma cell plasticity, was sufficient to decrease cell stiffness and transcriptionally induce tetraspanin-8-mediated dermal invasion. Moreover, ZEB1 expression correlated with Tspan8 expression in patient melanoma lesions. Our data suggest that intrinsic cell stiffness could be a highly relevant marker for human cutaneous melanoma development.

3.
Oncogene ; 43(20): 1489-1505, 2024 May.
Article in English | MEDLINE | ID: mdl-38519642

ABSTRACT

Cell plasticity sustains intra-tumor heterogeneity and treatment resistance in melanoma. Deciphering the transcriptional mechanisms governing reversible phenotypic transitions between proliferative/differentiated and invasive/stem-like states is required. Expression of the ZEB1 transcription factor is frequently activated in melanoma, where it fosters adaptive resistance to targeted therapies. Here, we performed a genome-wide characterization of ZEB1 transcriptional targets, by combining ChIP-sequencing and RNA-sequencing, upon phenotype switching in melanoma models. We identified and validated ZEB1 binding peaks in the promoter of key lineage-specific genes crucial for melanoma cell identity. Mechanistically, ZEB1 negatively regulates SOX10-MITF dependent proliferative/melanocytic programs and positively regulates AP-1 driven invasive and stem-like programs. Comparative analyses with breast carcinoma cells revealed lineage-specific ZEB1 binding, leading to the design of a more reliable melanoma-specific ZEB1 regulon. We then developed single-cell spatial multiplexed analyses to characterize melanoma cell states intra-tumoral heterogeneity in human melanoma samples. Combined with scRNA-Seq analyses, our findings confirmed increased ZEB1 expression in Neural-Crest-like cells and mesenchymal cells, underscoring its significance in vivo in both populations. Overall, our results define ZEB1 as a major transcriptional regulator of cell states transitions and provide a better understanding of lineage-specific transcriptional programs sustaining intra-tumor heterogeneity in melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma , Zinc Finger E-box-Binding Homeobox 1 , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Cell Line, Tumor , Cell Lineage/genetics , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mice , Animals , Cell Proliferation/genetics , Transcription, Genetic/genetics
4.
Nat Commun ; 14(1): 2575, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142597

ABSTRACT

Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.


Subject(s)
Cell Plasticity , Neuroblastoma , Humans , Neuroblastoma/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
5.
Genes (Basel) ; 13(6)2022 06 10.
Article in English | MEDLINE | ID: mdl-35741801

ABSTRACT

Bipolar disorder is a debilitating psychiatric condition that is shaped in a concerted interplay between hereditary and triggering risk factors. Profound depression and mania define the disorder, but high clinical heterogeneity among patients complicates diagnosis as well as pharmacological intervention. Identification of peripheral biomarkers that capture the genomic response to the exposome may thus progress the development of personalized treatment. MicroRNAs (miRNAs) play a prominent role in of post-transcriptional gene regulation in the context of brain development and mental health. They are coordinately modulated by multifarious effectors, and alteration in their expression profile has been reported in a variety of psychiatric conditions. Intriguingly, miRNAs can be released from CNS cells and enter circulatory bio-fluids where they remain remarkably stable. Hence, peripheral circulatory miRNAs may act as bio-indicators for the combination of genetic risk, environmental exposure, and/or treatment response. Here we provide a comprehensive literature search and data mining approach that summarize current experimental evidence supporting the applicability of miRNAs for patient stratification in bipolar disorder.


Subject(s)
Bipolar Disorder , Circulating MicroRNA , MicroRNAs , Biomarkers , Bipolar Disorder/diagnosis , Bipolar Disorder/genetics , Circulating MicroRNA/genetics , Data Mining , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
6.
Cancers (Basel) ; 12(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759677

ABSTRACT

Transcription factors, extensively described for their role in epithelial-mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.

7.
Cell Rep ; 30(6): 1767-1779.e6, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049009

ABSTRACT

EWSR1-FLI1, the chimeric oncogene specific for Ewing sarcoma (EwS), induces a cascade of signaling events leading to cell transformation. However, it remains elusive how genetically homogeneous EwS cells can drive the heterogeneity of transcriptional programs. Here, we combine independent component analysis of single-cell RNA sequencing data from diverse cell types and model systems with time-resolved mapping of EWSR1-FLI1 binding sites and of open chromatin regions to characterize dynamic cellular processes associated with EWSR1-FLI1 activity. We thus define an exquisitely specific and direct enhancer-driven EWSR1-FLI1 program. In EwS tumors, cell proliferation and strong oxidative phosphorylation metabolism are associated with a well-defined range of EWSR1-FLI1 activity. In contrast, a subpopulation of cells from below and above the intermediary EWSR1-FLI1 activity is characterized by increased hypoxia. Overall, our study reveals sources of intratumoral heterogeneity within EwS tumors.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Humans , Signal Transduction
8.
J Hazard Mater ; 363: 457-463, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30392881

ABSTRACT

The addition of either 3,6-dihydrazino-s-tetrazine (DHT) or 5-aminotetrazolium nitrate (HAT-NO3) to nitrocellulose-based propellants were investigated. At 25% (m/m) concentration, DHT and HAT-NO3 had significant impact on the burning rate of the propellant, up to 80% higher than that of the reference propellant. DHT was found to have very poor compatibility with nitrocellulose and the nitrated esters used in the formulation despite the presence of stabilizer. This lead to a rapid autocatalytic decomposition reaction resulting in a deflagration. HAT-NO3 also had poor compatibility with the same materials. On the contrary, non-ionic tetrazoles were found to be fully compatible with nitrocellulose and nitrated esters based propellants. Most nitrogen-rich energetic molecules have been studied for their explosive characteristics. This study shed light on the potential use of these materials as burning rate modifiers for gun propellant applications, for which very little is known. Moreover, it investigates the stability of the formulations incorporating nitrogen-rich molecules, as a means of assessing the safe use of these novel propellants.

9.
Oncotarget ; 10(48): 4937-4950, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31452835

ABSTRACT

The ALK gene is a major oncogene of neuroblastoma cases exhibiting ALK activating mutations. Here, we characterized two neuroblastoma cell lines established from a stage 4 patient at diagnosis either from the primary tumor (PT) or from the bone marrow (BM). Both cell lines exhibited similar genomic profiles. All cells in the BM-derived cell line exhibited an ALK F1174L mutation, whereas this mutation was present in only 5% of the cells in the earliest passages of the PT-derived cell line. The BM-derived cell line presented with a higher proliferation rate in vitro and injections in Nude mice resulted in tumor formation only for the BM-derived cell line. Next, we observed that the F1174L mutation frequency in the PT-derived cell line increased with successive passages. Further Whole Exome Sequencing revealed a second ALK mutation, L1196M, in this cell line. Digital droplet PCR documented that the allele fractions of both mutations changed upon passages, and that the F1174L mutation reached 50% in late passages, indicating clonal evolution. In vitro treatment of the PT-derived cell line exhibiting the F1174L and L1196M mutations with the alectinib inhibitor resulted in an enrichment of the L1196M mutation. Using xenografts, we documented a better efficacy of alectinib compared to crizotinib on tumor growth and an enrichment of the L1196M mutation at the end of both treatments. Finally, single-cell RNA-seq analysis was consistent with both mutations resulting in ALK activation. Altogether, this study provides novel insights into ALK mutation dynamics in a neuroblastoma model harbouring two ALK mutations.

10.
Nat Genet ; 49(9): 1408-1413, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28740262

ABSTRACT

Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.


Subject(s)
Cell Lineage/genetics , Gene Expression Regulation, Neoplastic/genetics , Neuroblastoma/genetics , Transcription Factors/genetics , Animals , Blotting, Western , Cell Line, Tumor/classification , Cell Lineage/drug effects , Doxycycline/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Genetic Heterogeneity , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , RNA Interference , RNAi Therapeutics , Reverse Transcriptase Polymerase Chain Reaction , Single-Cell Analysis , Transcription Factors/metabolism , Xenograft Model Antitumor Assays/methods
11.
Arthroplast Today ; 2(3): 93-96, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28326407

ABSTRACT

To our knowledge, proximal tibiofibular joint instability has never been reported in a patient with a total knee arthroplasty (TKA). We present the case of a patient with anterolateral proximal tibiofibular joint instability associated with a complex primary TKA. In 2010, a male patient of 47 years was referred for TKA after posttraumatic osteoarthritis. The patient's history includes a fracture of the left lateral tibial plateau in 2008 and removal of osteosynthesis material in 2009. TKA with a lateral metal augment and intramedullary stem was performed in 2010. After TKA, instability of the left proximal tibiofibular joint (PTFJ) was diagnosed. The patient underwent PTFJ arthrodesis and, at 5 years' follow-up, had no residual pain, with full range of motion. In this case, arthrodesis was the only possible surgical option because reconstruction surgeries require the establishment of bone tunnels in the tibia and fibula for the passage of a graft. Low bone quality and the use of an intramedullary stem with a metal augment in the tibia made any reconstruction technique unfeasible because the proximal tibia was obliterated. Although several PTFJ reconstruction techniques are available, they are difficult to apply to patients with a complex TKA.

SELECTION OF CITATIONS
SEARCH DETAIL