Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Gastroenterology ; 162(1): 209-222, 2022 01.
Article in English | MEDLINE | ID: mdl-34571027

ABSTRACT

BACKGROUND AND AIMS: Genomic alterations that encourage stem cell activity and hinder proper maturation are central to the development of colorectal cancer (CRC). Key molecular mediators that promote these malignant properties require further elucidation to galvanize translational advances. We therefore aimed to characterize a key factor that blocks intestinal differentiation, define its transcriptional and epigenetic program, and provide preclinical evidence for therapeutic targeting in CRC. METHODS: Intestinal tissue from transgenic mice and patients were analyzed by means of histopathology and immunostaining. Human CRC cells and neoplastic murine organoids were genetically manipulated for functional studies. Gene expression profiling was obtained through RNA sequencing. Histone modifications and transcription factor binding were determined with the use of chromatin immunoprecipitation sequencing. RESULTS: We demonstrate that SRY-box transcription factor 9 (SOX9) promotes CRC by activating a stem cell-like program that hinders intestinal differentiation. Intestinal adenomas and colorectal adenocarcinomas from mouse models and patients demonstrate ectopic and elevated expression of SOX9. Functional experiments indicate a requirement for SOX9 in human CRC cell lines and engineered neoplastic organoids. Disrupting SOX9 activity impairs primary CRC tumor growth by inducing intestinal differentiation. By binding to genome wide enhancers, SOX9 directly activates genes associated with Paneth and stem cell activity, including prominin 1 (PROM1). SOX9 up-regulates PROM1 via a Wnt-responsive intronic enhancer. A pentaspan transmembrane protein, PROM1 uses its first intracellular domain to support stem cell signaling, at least in part through SOX9, reinforcing a PROM1-SOX9 positive feedback loop. CONCLUSIONS: These studies establish SOX9 as a central regulator of an enhancer-driven stem cell-like program and carry important implications for developing therapeutics directed at overcoming differentiation defects in CRC.


Subject(s)
Cell Differentiation , Colorectal Neoplasms/metabolism , Enhancer Elements, Genetic , Neoplastic Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism , Animals , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genes, APC , HT29 Cells , Humans , Mice, Transgenic , Neoplastic Stem Cells/pathology , SOX9 Transcription Factor/genetics , Tumor Burden , Tumor Cells, Cultured , Wnt Signaling Pathway
2.
Sci Adv ; 9(13): eadf0927, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989360

ABSTRACT

Cell state plasticity is carefully regulated in adult epithelia to prevent cancer. The aberrant expansion of the normally restricted capability for cell state plasticity in neoplasia is poorly defined. Using genetically engineered and carcinogen-induced mouse models of intestinal neoplasia, we observed that impaired differentiation is a conserved event preceding cancer development. Single-cell RNA sequencing (scRNA-seq) of premalignant lesions from mouse models and a patient with hereditary polyposis revealed that cancer initiates by adopting an aberrant transcriptional state characterized by regenerative activity, marked by Ly6a (Sca-1), and reactivation of fetal intestinal genes, including Tacstd2 (Trop2). Genetic inactivation of Sox9 prevented adenoma formation, obstructed the emergence of regenerative and fetal programs, and restored multilineage differentiation by scRNA-seq. Expanded chromatin accessibility at regeneration and fetal genes upon Apc inactivation was reduced by concomitant Sox9 suppression. These studies indicate that aberrant cell state plasticity mediated by unabated regenerative activity and developmental reprogramming precedes cancer development.


Subject(s)
Adenoma , Colorectal Neoplasms , Mice , Animals , Intestines , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Differentiation , Adenoma/genetics , Adenoma/pathology
3.
Dev Cell ; 57(2): 212-227.e8, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34990589

ABSTRACT

The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colonic Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glucose Transporter Type 1/genetics , Humans , Mice , Mice, Nude , Organoids , Phosphoproteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptional Activation , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/physiology
4.
Nat Genet ; 52(2): 219-230, 2020 02.
Article in English | MEDLINE | ID: mdl-32025000

ABSTRACT

Somatic alterations in cancer genes are being detected in normal and premalignant tissue, thus placing greater emphasis on gene-environment interactions that enable disease phenotypes. By combining early genetic alterations with disease-relevant exposures, we developed an integrative mouse model to study gastric premalignancy. Deletion of Trp53 in gastric cells confers a selective advantage and promotes the development of dysplasia in the setting of dietary carcinogens. Organoid derivation from dysplastic lesions facilitated genomic, transcriptional and functional evaluation of gastric premalignancy. Cell cycle regulators, most notably Cdkn2a, were upregulated by p53 inactivation in gastric premalignancy, serving as a barrier to disease progression. Co-deletion of Cdkn2a and Trp53 in dysplastic gastric organoids promoted cancer phenotypes but also induced replication stress, exposing a susceptibility to DNA damage response inhibitors. These findings demonstrate the utility of mouse models that integrate genomic alterations with relevant exposures and highlight the importance of gene-environment interactions in shaping the premalignant state.


Subject(s)
Precancerous Conditions/pathology , Stomach Neoplasms/etiology , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Environmental Exposure/adverse effects , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Humans , Methylnitrosourea/toxicity , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Organoids/pathology , Precancerous Conditions/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL