Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Immunol ; 16(5): 476-484, 2015 May.
Article in English | MEDLINE | ID: mdl-25774716

ABSTRACT

The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.


Subject(s)
Bacteriolysis , DNA-Binding Proteins/metabolism , Francisella tularensis/physiology , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Tularemia/immunology , Animals , Cells, Cultured , Cytosol/microbiology , DNA-Binding Proteins/genetics , Disease Models, Animal , GTP-Binding Proteins/genetics , Humans , Mice , Mice, Knockout , RNA, Small Interfering/genetics
2.
BMC Biol ; 22(1): 58, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468285

ABSTRACT

BACKGROUND: Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS: In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS: We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Cell Differentiation/genetics , Cell Division , Single-Cell Analysis/methods
3.
Int J Cancer ; 151(1): 138-152, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35253899

ABSTRACT

Beyond their critical role in hemostasis, platelets physically interact with neutrophils to form neutrophil-platelet aggregates (NPAs), enhancing neutrophil effector functions during inflammation. NPAs may also promote disease worsening in various inflammatory diseases. However, characterization of NPAs in cancer remains totally unexplored. Using ImageStreamX (ISX) imaging flow cytometer, we were not only allowed able to detect CD15+ CD14- CD36+ ITGA2B+ NPAs in both healthy donors' (HDs) and cancer patients' bloods, but we also showed that NPAs result from the binding of platelets preferentially to low-density neutrophils (LDNs) as opposed to normal-density neutrophils (NDNs). By reanalyzing two independent public scRNAseq data of whole blood leukocytes from cancer patients and HDs, we could identify a subset of neutrophils with high platelet gene expression that may correspond to NPAs. Moreover, we showed that cancer patients' derived NPAs possessed a distinct molecular signature compared to the other neutrophil subsets, independently of platelet genes. Gene ontology (GO) term enrichment analysis of this NPAs-associated neutrophil transcriptomic signature revealed a significant enrichment of neutrophil degranulation, chemotaxis and trans-endothelial migration GO terms. Lastly, using The Cancer Genome Atlas (TCGA), we could show by multivariate Cox analysis that the NPAs-associated neutrophil transcriptomic signature was associated with a worse patient prognosis in several cancer types. These results suggest that neutrophils from NPAs are systemically primed by platelets empowering them with cancer progression capacities once at tumor site. NPAs may therefore hold clinical utility as novel noninvasive blood prognostic biomarker in cancer patients with solid tumors.


Subject(s)
Neoplasms , Neutrophils , Blood Platelets , Flow Cytometry , Humans , Neoplasms/pathology , Neutrophils/pathology , Prognosis
4.
Cytometry A ; 99(11): 1079-1090, 2021 11.
Article in English | MEDLINE | ID: mdl-33866668

ABSTRACT

The analysis of immune cell signaling is critical for the understanding of the biology and pathology of the immune system, and thus a mandatory step for the development of efficient biomarkers and targeted therapies. Phosflow, which has progressively replaced the traditional western blot approach, relies on flow cytometry to analyze various signaling pathways at a single-cell level. This technique however suffers a lack of sensitivity largely due to the low signal/noise ratio that characterizes cell signaling analysis. In this study, we describe a new technique, which combines the use of biofunctionalized nanospheres (i.e., synthetic particulate antigens, SPAg) to stimulate the immune cells in suspension and imaging flow cytometry to identify homogenously-stimulated cells and quantify the activity of the chosen signaling pathway in selected subcellular regions of interest. Using BCR signaling as model, we demonstrate that SIBERIAN (SPAg-assIsted suB-cEllulaR sIgnaling ANalysis) allows assessing immune cell signaling with unprecedented sensitivity and specificity.


Subject(s)
Nanospheres , Flow Cytometry , Phosphorylation , Signal Transduction
5.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31019048

ABSTRACT

Fatal neurological syndromes can occur after measles virus (MeV) infection of the brain. The mechanisms controlling MeV spread within the central nervous system (CNS) remain poorly understood. We analyzed the role of type I interferon (IFN-I) receptor (IFNAR) signaling in the control of MeV infection in a murine model of brain infection. Using organotypic brain cultures (OBC) from wild-type and IFNAR-knockout (IFNARKO) transgenic mice ubiquitously expressing the human SLAM (CD150) receptor, the heterogeneity of the permissiveness of different CNS cell types to MeV infection was characterized. In the absence of IFNAR signaling, MeV propagated significantly better in explant slices. In OBC from IFNAR-competent mice, while astrocytes and microglia were infected on the day of explant preparation, they became refractory to infection with time, in contrast to neurons and oligodendrocytes, which remained permissive to infection. This selective loss of permissiveness to MeV infection was not observed in IFNARKO mouse OBC. Accordingly, the development of astrogliosis related to the OBC procedure was exacerbated in the presence of IFNAR signaling. In the hippocampus, this astrogliosis was characterized by a change in the astrocyte phenotype and by an increase of IFN-I transcripts. A proteome analysis showed the upregulation of 84 out of 111 secreted proteins. In the absence of IFNAR, only 27 secreted proteins were upregulated, and none of these were associated with antiviral activities. Our results highlight the essential role of the IFN-I response in astrogliosis and in the permissiveness of astrocytes and microglia that could control MeV propagation throughout the CNS.IMPORTANCE Measles virus (MeV) can infect the central nervous system (CNS), with dramatic consequences. The mechanisms controlling MeV invasion of the CNS remain ill-defined since most previous data were obtained from postmortem analysis. Here, we highlight for the first time the crucial role of the type I interferon (IFN-I) response not only in the control of CNS invasion but also in the early permissiveness of glial cells to measles virus infection.


Subject(s)
Astrocytes/virology , Measles virus/metabolism , Measles/metabolism , Microglia/virology , Receptor, Interferon alpha-beta/metabolism , Signal Transduction/physiology , Animals , Antiviral Agents/pharmacology , Astrocytes/pathology , Brain/virology , Central Nervous System/virology , Cytokines , Female , Hippocampus/pathology , Hippocampus/virology , Humans , Male , Measles/pathology , Measles/virology , Mice , Mice, Knockout , Neurons/virology , Oligodendroglia/virology , Receptor, Interferon alpha-beta/genetics , Signal Transduction/genetics , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism
6.
Nano Lett ; 16(1): 297-308, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26650819

ABSTRACT

Adoptive cell therapy represents a promising approach for several chronic diseases. This study describes an innovative strategy for biofunctionalization of nanoparticles, allowing the generation of synthetic particulate antigens (SPAg). SPAg activate polyclonal B cells and vectorize noncognate proteins into their endosomes, generating highly efficient stimulators for ex vivo expansion of antigen-specific CD4+ T cells. This method also allows harnessing the ability of B cells to polarize CD4+ T cells into effectors or regulators.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Nanoparticles/chemistry , Vaccines, Synthetic/immunology , B-Lymphocytes/immunology , Humans , Lymphocyte Activation , Nanoparticles/therapeutic use , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/therapeutic use
7.
Nanoscale ; 15(44): 18015-18032, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37916389

ABSTRACT

LipoParticles, core-shell assemblies consisting of a polymer core coated by a lipid membrane, are promising carriers for drug delivery applications with intracellular targets. This is of great interest since it is actually challenging to treat infections involving intracellular bacteria such as bone and joint infections where the bacteria are hidden in osteoblast cells. The present work reports for the first time to the best of our knowledge the proof of enhanced internalization of particles in osteoblast cells thanks to a lipid coating of particles (= LipoParticles). The ca. 300 nm-sized assemblies were elaborated by reorganization of liposomes (composed of DPPC/DPTAP 10/90 mol/mol) onto the surface of poly(lactic-co-glycolic acid) (PLGA) particles, and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zetametry. Optimization of these assemblies was also performed by adding poly(ethylene glycol) (PEG) chains on their surface (corresponding to a final formulation of DPPC/DPTAP/DPPE-PEG5000 8/90/2 mol/mol/mol). Interestingly, this provided them colloidal stability after their 20-fold dilution in PBS or cell culture medium, and made possible their freeze-drying without forming aggregates after their re-hydration. Their non-cytotoxicity towards a human osteoblast cell line (MG63) was also demonstrated. The enhanced internalization of LipoParticles in this MG63 cell line, in comparison with PLGA particles, was proven by observations with a confocal laser scanning microscope, as well as by flow cytometry assays. Finally, this efficient internalization of LipoParticles in MG63 cells was confirmed by TEM on ultrathin sections, which also revealed localization close to intracellular Staphylococcus aureus.


Subject(s)
Nanoparticles , Polymers , Humans , Polymers/pharmacology , Polyethylene Glycols , Liposomes , Osteoblasts , Lipids , Drug Carriers
8.
Front Oncol ; 12: 1020740, 2022.
Article in English | MEDLINE | ID: mdl-36387187

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) is characterized by the progressive accumulation of monoclonal mature B lymphocytes. Autoimmune complications are common in CLL occurring in up to a quarter of all patients during the course of the illness. Etiology of autoimmunity in CLL is unknown but it is widely admitted that the pathogenic auto-Abs do not originate from the tumoral clone but from the non-malignant B cell pool. This indicates that the developmental scheme of non-malignant B cells could also be perturbed in CLL patients. To address this question, we have designed a B cell-centered antibody panel and used time-of-flight mass cytometry to compare the residual non-malignant B cell pool of CLL patients with the peripheral B cell pool of age-matched healthy donors. We show that the non-malignant B cell compartment of the patients is characterized by profound attrition of naïve B cells and of a population of anergized autoreactive B cells, suggesting impaired B cell lymphopoeisis as well as perturbations of the B cell tolerance checkpoints.

9.
Nat Commun ; 10(1): 5350, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767837

ABSTRACT

Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of ß2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection.


Subject(s)
Graft Rejection/immunology , Heart Transplantation/methods , Inflammation/immunology , Killer Cells, Natural/immunology , Receptors, KIR/immunology , Animals , Cells, Cultured , Endothelial Cells/immunology , Endothelial Cells/pathology , Humans , K562 Cells , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Tissue Donors , Transplantation, Homologous , beta 2-Microglobulin/genetics , beta 2-Microglobulin/immunology , beta 2-Microglobulin/metabolism
10.
Nat Commun ; 7: 13600, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924814

ABSTRACT

Dogma holds that plasma cells, as opposed to B cells, cannot bind antigen because they have switched from expression of membrane-bound immunoglobulins (Ig) that constitute the B-cell receptor (BCR) to production of the secreted form of immunoglobulins. Here we compare the phenotypical and functional attributes of plasma cells generated by the T-cell-dependent and T-cell-independent forms of the hapten NP. We show that the nature of the secreted Ig isotype, rather than the chemical structure of the immunizing antigen, defines two functionally distinct populations of plasma cells. Fully mature IgM-expressing plasma cells resident in the bone marrow retain expression of a functional BCR, whereas their IgG+ counterparts do not. Antigen boost modifies the gene expression profile of IgM+ plasma cells and initiates a cytokine production program, characterized by upregulation of CCL5 and IL-10. Our results demonstrate that IgM-expressing plasma cells can sense antigen and acquire competence for cytokine production upon antigenic challenge.


Subject(s)
Antigens/metabolism , Cytokines/biosynthesis , Immunoglobulin M/metabolism , Plasma Cells/metabolism , Animals , Antibody-Producing Cells/metabolism , Bone Marrow Cells/cytology , Dextrans/metabolism , Gene Expression Profiling , Gene Ontology , Mice, Inbred C57BL , Receptors, Antigen, B-Cell/metabolism
11.
FEBS J ; 281(3): 673-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24219411

ABSTRACT

Human P-glycoprotein (P-gp) controls drugs bioavailability by pumping structurally unrelated drugs out of cells. The X-ray structure of the mouse P-gp ortholog has been solved, with two SSS enantiomers or one RRR enantiomer of the selenohexapeptide inhibitor QZ59, found within the putative drug-binding pocket (Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL et al. (2009). Science 323, 1718-1722). This offered the first opportunity to localize the well-known H and R drug-binding sites with respect to the QZ59 inhibition mechanisms of Hoechst 33342 and daunorubicin transports, characterized here in cellulo. We found that QZ59-SSS competes efficiently with both substrates, with K(I,app) values of 0.15 and 0.3 µM, which are 13 and 2 times lower, respectively, than the corresponding K(m,app) values. In contrast, QZ59-RRR non-competitively inhibited daunorubicin transport with moderate efficacy (K(I,app) = 1.9 µM); it also displayed a mixed-type inhibition of the Hoechst 33342 transport, resulting from a main non-competitive tendency (K(i2,app) = 1.6 µM) and a limited competitive tendency (K(i1,app) = 5 µM). These results suggest a positional overlap of QZ59 and drugs binding sites: full for the SSS enantiomer and partial for the RRR enantiomer. Crystal structure analysis suggests that the H site overlaps both QZ59-SSS locations while the R site overlaps the most embedded location.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/metabolism , Drug Resistance, Multiple/drug effects , Membrane Transport Modulators/pharmacology , Models, Molecular , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Binding, Competitive , Biological Transport/drug effects , Catalytic Domain , Daunorubicin/chemistry , Daunorubicin/metabolism , Daunorubicin/pharmacology , Humans , Kinetics , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/metabolism , Mice , Molecular Docking Simulation , NIH 3T3 Cells , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Stereoisomerism
12.
Vaccine ; 28(2): 576-82, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19878751

ABSTRACT

We have conducted a 1-year longitudinal study in mice vaccinated by free serotype 4 Streptococcus pneumoniae PS (PS4), the corresponding tetanus toxoid (TT)-conjugated vaccine, or the TT carrier alone. B and T cell immunity induced by these three types of antigen, were compared by monitoring the (i) long-term persistence of specific serum antibodies, (ii) frequency of memory B cell precursors in spleen, and (iii) T cell responses against the carrier. While PS4-specific antibody response appeared later than the anti-carrier response upon primary immunization, PS4-specific B memory and serum responses were quantitatively and qualitatively similar to the ones observed against TT upon immunization by either the free carrier or the conjugate. We also observed a parallel persistent carrier-specific T cell response in the spleen. These data indicate that the nature and long-term kinetics of the anti-PS4 antibody response induced by the conjugate vaccine are similar to "classical" T-dependent response elicited by conventional protein antigens.


Subject(s)
B-Lymphocytes/immunology , Bacterial Vaccines/immunology , Polysaccharides, Bacterial/immunology , Streptococcus pneumoniae/immunology , T-Lymphocytes/immunology , Tetanus Toxoid/immunology , Vaccines, Conjugate/immunology , Animals , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Kinetics , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL