Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nature ; 566(7742): 79-84, 2019 02.
Article in English | MEDLINE | ID: mdl-30675062

ABSTRACT

Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains-the 7-transmembrane domains-in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.


Subject(s)
Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction , Allosteric Regulation , Cryoelectron Microscopy , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Ligands , Models, Molecular , Protein Domains , Protein Stability , Receptor, Metabotropic Glutamate 5/ultrastructure
3.
J Biol Chem ; 299(4): 104589, 2023 04.
Article in English | MEDLINE | ID: mdl-36889587

ABSTRACT

Mycobacterium tuberculosis (Mtb) utilizes sophisticated machinery called the type VII secretion system to translocate virulence factors across its complex lipid membrane. EspB, a Ć¢ĀˆĀ¼36Ā kDa secreted substrate of the ESX-1 apparatus, was shown to cause ESAT-6-independent host cell death. Despite the current wealth of high-resolution structural information of the ordered N-terminal domain, the mechanism of EspB-mediated virulence remains poorly characterized. Here, we document EspB interaction with phosphatidic acid (PA) and phosphatidylserine (PS) in the context of membranes, through a biophysical approach including transmission electron microscopy and cryo-EM. We were also able to show PA, PS-dependent conversion of monomers to oligomers at physiological pH. Our data suggest that EspB adheres to biological membranes with limited PA and PS. EM of yeast mitochondria with EspB indicates a mitochondrial membrane-binding property of this ESX-1 substrate. Further, we determined the 3D structures of EspB with and without PA and observed plausible stabilization of the low complexity C-terminal domain in the presence of PA. Collectively, our cryo-EM-based structural and functional studies of EspB provide further insight into the host-Mtb interaction.


Subject(s)
Mycobacterium tuberculosis , Type VII Secretion Systems , Bacterial Proteins/metabolism , Type VII Secretion Systems/metabolism , Virulence Factors/metabolism , Cryoelectron Microscopy , Mycobacterium tuberculosis/metabolism
4.
Small ; : e2404373, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011730

ABSTRACT

Short peptide-based supramolecular hydrogels hold enormous potential for a wide range of applications. However, the gelation of these systems is very challenging to control. Minor changes in the peptide sequence can significantly influence the self-assembly mechanism and thereby the gelation propensity. The involvement of SARS CoV E protein in the assembly and release of the virus suggests that it may have inherent self-assembling properties that can contribute to the development of hydrogels. Here, three pentapeptide sequences derived from C-terminal of SARS CoV E protein are explored with same amino acid residues but different sequence distributions and discovered a drastic difference in the gelation propensity. By combining spectroscopic and microscopic techniques, the relationship between peptide sequence arrangement and molecular assembly structure are demonstrated, and how these influence the mechanical properties of the hydrogel. The present study expands the variety of secondary structures for generating supramolecular hydrogels by introducing the 310-helix as the primary building block for gelation, facilitated by a water-mediated structural transition into Ɵ-sheet conformation. Moreover, these Fmoc-modified pentapeptide hydrogels/supramolecular assemblies with tunable morphology and mechanical properties are suitable for tissue engineering, injectable delivery, and 3D bio-printing applications.

5.
Nat Chem Biol ; 18(10): 1046-1055, 2022 10.
Article in English | MEDLINE | ID: mdl-35654847

ABSTRACT

Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Dimerization , Humans , Peptides/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
6.
Org Biomol Chem ; 22(20): 4057-4061, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716633

ABSTRACT

An efficient and practical one-pot synthesis of isoindolines from readily available starting materials was achieved under mild conditions by implementing an isoindole umpolung strategy. A variety of isoindolines were prepared with good to excellent yields. Biological screens of these identified compounds demonstrated that they are potent potentiators of colistin for multi-drug resistant Acinetobacter baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Colistin/pharmacology , Colistin/chemical synthesis , Colistin/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Isoindoles/chemical synthesis , Isoindoles/pharmacology , Isoindoles/chemistry , Molecular Structure , Structure-Activity Relationship
7.
J Biol Chem ; 298(10): 102441, 2022 10.
Article in English | MEDLINE | ID: mdl-36055404

ABSTRACT

Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging Ɵ-barrel pore-forming toxin. Upon binding to the target membranes, VCC monomers first assemble into oligomeric prepore intermediates and subsequently transform into transmembrane Ɵ-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane Ɵ-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals WT-like oligomeric Ɵ-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature than that of the WT toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the prepore-like intermediate state that is hindered from converting into the functional Ɵ-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.


Subject(s)
Bacterial Proteins , Cytotoxins , Pore Forming Cytotoxic Proteins , Vibrio cholerae , Virulence Factors , Cell Membrane/metabolism , Cytotoxins/chemistry , Cytotoxins/genetics , Vibrio cholerae/pathogenicity , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Virulence Factors/chemistry , Virulence Factors/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Amino Acid Motifs , Mutation , Glutamic Acid/chemistry , Glutamic Acid/genetics
8.
Proteins ; 91(2): 137-146, 2023 02.
Article in English | MEDLINE | ID: mdl-36000388

ABSTRACT

Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)-the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2Ā Ć…, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3Ā Ć…. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.


Subject(s)
Bacterial Toxins , Vibrio parahaemolyticus , Vibrio parahaemolyticus/chemistry , Cryoelectron Microscopy , Hemolysin Proteins/chemistry , Hemolysin Proteins/toxicity , Bacterial Toxins/chemistry
9.
J Biol Chem ; 296: 100025, 2021.
Article in English | MEDLINE | ID: mdl-33154165

ABSTRACT

Virtually all SARS-CoV-2 vaccines currently in clinical testing are stored in a refrigerated or frozen state prior to use. This is a major impediment to deployment in resource-poor settings. Furthermore, several of them use viral vectors or mRNA. In contrast to protein subunit vaccines, there is limited manufacturing expertise for these nucleic-acid-based modalities, especially in the developing world. Neutralizing antibodies, the clearest known correlate of protection against SARS-CoV-2, are primarily directed against the receptor-binding domain (RBD) of the viral spike protein, suggesting that a suitable RBD construct might serve as a more accessible vaccine ingredient. We describe a monomeric, glycan-engineered RBD protein fragment that is expressed at a purified yield of 214 mg/l in unoptimized, mammalian cell culture and, in contrast to a stabilized spike ectodomain, is tolerant of exposure to temperatures as high as 100 Ā°C when lyophilized, up to 70 Ā°C in solution and stable for over 4Ā weeks at 37 Ā°C. In prime:boost guinea pig immunizations, when formulated with the MF59-like adjuvant AddaVax, the RBD derivative elicited neutralizing antibodies with an endpoint geometric mean titer of Ć¢ĀˆĀ¼415 against replicative virus, comparing favorably with several vaccine formulations currently in the clinic. These features of high yield, extreme thermotolerance, and satisfactory immunogenicity suggest that such RBD subunit vaccine formulations hold great promise to combat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/biosynthesis , COVID-19/prevention & control , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/biosynthesis , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Guinea Pigs , HEK293 Cells , Hot Temperature , Humans , Immunogenicity, Vaccine , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , Protein Stability , Receptors, Virus/chemistry , Receptors, Virus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccine Potency
10.
Mol Microbiol ; 115(4): 508-525, 2021 04.
Article in English | MEDLINE | ID: mdl-33089544

ABSTRACT

Ɵ-barrel pore-forming toxins perforate cell membranes by forming oligomeric Ɵ-barrel pores. The most crucial step is the membrane-insertion of the pore-forming motifs that create the transmembrane Ɵ-barrel scaffold. Molecular mechanism that regulates structural reorganization of these pore-forming motifs during Ɵ-barrel pore-formation still remains elusive. Using Vibrio cholerae cytolysin as an archetypical example of the Ɵ-barrel pore-forming toxin, we show that a key tyrosine residue (Y321) in the hinge region of the pore-forming motif plays crucial role in this process. Mutation of Y321 abrogates oligomerization of the membrane-bound toxin protomers, and blocks subsequent steps of pore-formation. Our study suggests that the presence of Y321 in the hinge region of the pore-forming motif is crucial for the toxin molecule to sense membrane-binding, and to trigger essential structural rearrangements required for the subsequent oligomerization and pore-formation process. Such a regulatory mechanism of pore-formation by V. cholerae cytolysin has not been documented earlier in the structurally related Ɵ-barrel pore-forming toxins.


Subject(s)
Amino Acid Motifs , Perforin/chemistry , Perforin/physiology , Tyrosine/chemistry , Vibrio cholerae/chemistry , Vibrio cholerae/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Cytotoxins/chemistry , Cytotoxins/physiology , Humans , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Mutation , Perforin/ultrastructure , Protein Conformation , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vibrio cholerae/ultrastructure
11.
Bioorg Med Chem Lett ; 72: 128878, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35788034

ABSTRACT

Multidrug-resistant (MDR) Gram-negative bacteria are an urgent and rapidly spreading threat to human health with limited treatment options. Previously, we discovered a novel [1,2,5]oxadiazolo[3,4-b]pyrazine-containing compound (1) that selectively re-sensitized a variety of MDR Gram-negative bacteria to colistin, one of the last-resort antibiotic. Herein, we report the structure-activity relationship studies of compound 1 that led to the discovery of several more potent and/or less toxic resistance-modifying agents (RMAs). Further evaluation of these RMAs showed that they were effective in a wide range of MDR bacteria. These results demonstrated these compounds as a novel class of RMAs and may be further developed as therapeutic agents.


Subject(s)
Gram-Negative Bacterial Infections , Polymyxins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Humans , Microbial Sensitivity Tests , Polymyxins/pharmacology , Pyrazines/pharmacology , Pyrazines/therapeutic use , Structure-Activity Relationship
12.
Biochemistry ; 59(4): 605-614, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31808340

ABSTRACT

Thermostable direct hemolysin (TDH) of Vibrio parahemolyticus is a membrane-damaging pore-forming toxin with potent cytolytic/cytotoxic activity. TDH exists as a tetramer consisting of protomers with a core Ɵ-sandwich domain, flanked by an 11-amino acid long N-terminal region (NTR). This NTR could not be modeled in the previously determined crystal structure of TDH. Moreover, the functional implication of NTR for the membrane-damaging action of TDH remains unknown. In the present study, we have explored the implications of NTR for the structure-function mechanism of TDH. Our data show that the presence of NTR modulates the physicochemical property of TDH in terms of augmenting the amyloidogenic propensity of the protein. Deletion of NTR compromises the binding of TDH toward target cell membranes and drastically affects the membrane-damaging cytolytic/cytotoxic activity of the toxin. Mutations of aromatic/hydrophobic residues within NTR also confer compromised cell-killing activity. Moreover, covalent trapping of NTR, via an engineered disulfide bond, against the core Ɵ-sandwich domain also abrogates the cytolytic/cytotoxic activity of TDH. This observation suggests that an unrestrained configuration of NTR is crucial for the membrane-damaging action of TDH. On the basis of our study, we propose a model explaining the role of NTR in the membrane-damaging function of TDH.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Hemolysin Proteins/metabolism , Hemolysin Proteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Toxins/metabolism , Biochemical Phenomena/genetics , Biological Transport/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/physiology , Hemolysis , Humans , Mutation/genetics , Protein Subunits/metabolism , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism
13.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30429339

ABSTRACT

Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite neutralizers are potential candidates for isolation of HIV-1 bNAbs. The coexistence of bNAbs such as BG18 with neutralization-susceptible autologous viruses in an HIV-1-infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1-infected children than in adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral-naive HIV-1 clade C chronically infected pediatric elite neutralizer, AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, a median inhibitory dilution (ID50) value of 1,246, and presence of N160 and N332 supersite-dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses, exhibited substantial indels despite limited somatic hypermutations, interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy, and demonstrated high binding affinity. In addition, AIIMS-P01 neutralized the coexisting and evolving autologous viruses, suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in the AIIMS_330 pediatric elite neutralizer. Such pediatric elite neutralizers can serve as potential candidates for isolation of novel HIV-1 pediatric bNAbs and for understanding the coevolution of virus and host immune response.IMPORTANCE More than 50% of the HIV-1 infections globally are caused by clade C viruses. To date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are under way to design immunogens that can elicit correlates of protection upon vaccination. Here, we report the isolation and characterization of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01, from a clade C chronically infected pediatric elite neutralizer. The N332 supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibited substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation and characterization of bNAbs contributing to the plasma breadth in HIV-1 chronically infected children may help provide a better understanding of their role in controlling HIV-1 infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , HIV-1/immunology , Adult , Anti-Retroviral Agents , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Biological Evolution , Child , Epitopes/immunology , Female , HIV Antibodies/immunology , HIV Infections/virology , HIV Seropositivity , Humans , Male , Neutralization Tests , Vaccination , Viremia , env Gene Products, Human Immunodeficiency Virus/immunology
14.
Nature ; 510(7506): 512-7, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965652

ABSTRACT

Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.


Subject(s)
Polyketide Synthases/chemistry , Polyketide Synthases/ultrastructure , Streptomyces/enzymology , Biocatalysis , Catalytic Domain , Cryoelectron Microscopy , Fatty Acid Synthases/chemistry , Macrolides/metabolism , Models, Molecular , Polyketide Synthases/metabolism
15.
Nature ; 510(7506): 560-4, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965656

ABSTRACT

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the Ɵ-keto intermediate, and after Ɵ-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.


Subject(s)
Biocatalysis , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Streptomyces/enzymology , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Acyl Carrier Protein/ultrastructure , Acyltransferases/chemistry , Acyltransferases/metabolism , Acyltransferases/ultrastructure , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Catalytic Domain , Cryoelectron Microscopy , Macrolides/metabolism , Models, Molecular , Polyketide Synthases/ultrastructure , Protein Structure, Tertiary
16.
Mol Cell ; 48(4): 655-61, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23063524

ABSTRACT

Despite the crucial impact of leptin signaling on metabolism and body weight, little is known about the structure of the liganded leptin receptor (LEP-R) complex. Here, we applied single-particle electron microscopy (EM) to characterize the architecture of the extracellular region of LEP-R alone and in complex with leptin. We show that unliganded LEP-R displays significant flexibility in a hinge region within the cytokine homology region 2 (CHR2) that is connected to rigid membrane-proximal FnIII domains. Leptin binds to CHR2 in order to restrict the flexible hinge and the disposition of the FnIII "legs." Through a separate interaction, leptin engages the Ig-like domain of a second liganded LEP-R, resulting in the formation of a quaternary signaling complex. We propose that the membrane proximal domain rigidification in the context of a liganded cytokine receptor dimer is a key mechanism for the transactivation of Janus kinases (Jaks) bound at the intracellular receptor region.


Subject(s)
Leptin/pharmacology , Receptors, Leptin/chemistry , Receptors, Leptin/metabolism , Signal Transduction/drug effects , Humans , Leptin/chemistry , Leptin/metabolism , Ligands , Microscopy, Electron , Models, Molecular , Protein Conformation/drug effects , Receptors, Leptin/isolation & purification , Receptors, Leptin/ultrastructure
17.
Proteins ; 87(5): 365-379, 2019 05.
Article in English | MEDLINE | ID: mdl-30632633

ABSTRACT

Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.


Subject(s)
Heat-Shock Proteins, Small/chemistry , Molecular Chaperones/chemistry , Mycobacterium marinum/chemistry , Adenosine Triphosphate/chemistry , Crystallography, X-Ray , Protein Binding , Protein Folding , Protein Multimerization
18.
Biochem Biophys Res Commun ; 518(1): 38-43, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31402116

ABSTRACT

Uracil is not always a mistakenly occurring base in DNA. Uracils in DNA genomes are known to be important in the life cycles of Bacillus subtilis phages (PBS1/2) and the malarial parasite, Plasmodium falciparum; and have been implicated in the development of fruit fly and antibody maturation in B-lymphocytes. Availability of a sensitive, specific and robust technique for the detection uracils in genes/genomes is essential to understand its varied biological roles. Mycobacterium smegmatis UdgX (MsmUdgX), identified and characterised in our laboratory, forms covalent complexes with the uracil sites in DNA in a specific manner. MsmUdgX cleaves the glycosidic bond between uracil and the deoxyribose sugar in DNA to produce uracilate and oxocarbenium ions. The oxocarbenium ion is then captured into a covalent complex by the nucleophilic attack of a histidine side chain of MsmUdgX. Here, we describe the use of a fusion protein, mCherry tagged MsmUdgX (mChUdgX), which combines the property of MsmUdgX to covalently and specifically bind the uracil sites in the genome, with the sensitivity of fluorescent detection of mCherry as a reporter. We show that both the purified mChUdgX and the Escherichia coli cell-extracts overexpressing mChUdgX provide high sensitivity and specificity of detecting uracils in DNA.


Subject(s)
Bacterial Proteins/metabolism , DNA/chemistry , Luminescent Proteins/metabolism , Molecular Probes/metabolism , Uracil/analysis , Genome, Bacterial , Mycobacterium smegmatis/metabolism , Recombinant Fusion Proteins/metabolism , Red Fluorescent Protein
19.
J Biol Chem ; 292(1): 278-291, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27879316

ABSTRACT

A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses.


Subject(s)
Antibodies, Neutralizing/blood , Drug Design , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV Infections/immunology , HIV-1/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , Crystallography, X-Ray , Epitopes/immunology , Guinea Pigs , HIV Antibodies/immunology , HIV Infections/blood , HIV Infections/virology , Humans , Protein Binding , Protein Conformation , Protein Multimerization
20.
PLoS Pathog ; 11(12): e1005322, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26646856

ABSTRACT

Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein.


Subject(s)
Henipavirus Infections/metabolism , Nipah Virus/chemistry , Viral Envelope Proteins/chemistry , Virus Internalization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Nipah Virus/metabolism , Protein Conformation , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL