Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Bioorg Med Chem Lett ; 44: 128082, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33991626

ABSTRACT

A focused SAR study was conducted on a series of N1-substituted pyrazolopyrimidinone PDE2 inhibitors to reveal compounds with excellent potency and selectivity. The series was derived from previously identified internal leads and designed to enhance steric interactions with key amino acids in the PDE2 binding pocket. Compound 26 was identified as a lead compound with excellent PDE2 selectivity and good physicochemical properties.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Drug Discovery , Phosphodiesterase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(20): 5132-5137, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27634194

ABSTRACT

Herein, we describe our research efforts to develop unique cores in molecules which function as HCV nonstructural protein 5A (NS5A) inhibitors. In particular, various fused tetracyclic cores were identified which showed genotype and mutant activities comparable to the indole-based tetracyclic core.


Subject(s)
Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Hepacivirus/drug effects
3.
Bioorg Med Chem Lett ; 26(15): 3414-20, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27394665

ABSTRACT

Herein we describe our research efforts around the aryl and heteroaryl substitutions at the aminal carbon of the tetracyclic indole-based HCV NS5A inhibitor MK-8742. A series of potent NS5A inhibitors are described, such as compounds 45-47, 54, 56, and 65, which showed improved potency against clinically relevant and resistance associated HCV variants. The improved potency profiles of these compounds demonstrated an SAR that can improve the potency against GT2b, GT1a Y93H, and GT1a L31V altogether, which was unprecedented in our previous efforts in NS5A inhibition.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , Imidazoles/chemical synthesis , Imidazoles/chemistry , Male , Microbial Sensitivity Tests , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(15): 3800-5, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27282742

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein we describe our continued research efforts around the alkyl "Z group" modification of the tetracyclic indole-based NS5A inhibitor MK-8742, which led to the discovery of a series of potent NS5A inhibitors. Compounds 10 and 19 are of particular interests since they are as potent as our previous leads and have much improved rat pharmacokinetic profiles.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , Hepatitis C/drug therapy , Imidazoles/chemical synthesis , Imidazoles/chemistry , Male , Microbial Sensitivity Tests , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Virus Replication/drug effects
6.
Bioorg Med Chem Lett ; 26(15): 3793-9, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27282743

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro virologic profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed-dose combination (FDC) regimen for the treatment of HCV infection. Merck's effort in this area identified MK-4882 and MK-8325 as early development leads. Herein, we describe the discovery of potent macrocyclic NS5A inhibitors bearing the MK-8325 or MK-4882 core structure.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Hepatitis C/drug therapy , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
7.
Bioorg Med Chem Lett ; 26(19): 4851-4856, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27568086

ABSTRACT

As part of an ongoing effort in NS5A inhibition at Merck we now describe our efforts for introducing substitution around the tetracyclic indole core of MK-8742. Fluoro substitution on the core combined with the fluoro substitutions on the proline ring improved the potency against GT1a Y93H significantly. However, no improvement on GT2b potency was achieved. Limiting the fluoro substitution to C-1 of the tetracyclic indole core had a positive impact on the potency against the resistance associated variants, such as GT1a Y93H and GT2b, and the PK profile as well. Compounds, such as 62, with reduced potency shifts between wild type GT1a to GT2b, GT1a Y93H, and GT1a L31V were identified.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Benzofurans/chemistry , Benzofurans/pharmacokinetics , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Indoles/chemistry , Indoles/pharmacokinetics , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 26(13): 3158-3162, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27180013

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein, we describe research efforts that led to the discovery of a series of fused tricyclic core containing HCV NS5A inhibitors such as 24, 39, 40, 43, and 44 which have pan-genotype activity and are orally bioavailable in the rat.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Hepatitis C/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Genotype , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
10.
Bioorg Med Chem Lett ; 26(5): 1475-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26850003

ABSTRACT

HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination treatment regimen. Herein we describe the research efforts that led to the discovery of silyl proline containing HCV NS5A inhibitors such as 7e and 8a with pan-genotype activity profile and acceptable pharmacokinetic properties.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Hepacivirus/genetics , Proline/analogs & derivatives , Silanes/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Dose-Response Relationship, Drug , Genotype , Microbial Sensitivity Tests , Molecular Structure , Silanes/pharmacology , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
11.
Bioorg Med Chem ; 22(7): 2303-10, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24588962

ABSTRACT

The ribonucleotide reductase (RNR) enzyme is a heteromer of RRM1 and RRM2 subunits. The active enzyme catalyzes de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. Complexity in the generation of physiologically relevant, active RRM1/RRM2 heterodimers was perceived as limiting to the identification of selective RRM1 inhibitors by high-throughput screening of compound libraries and led us to seek alternative methods to identify lead series. In short, we found that gemcitabine, as its diphosphate metabolite, represents one of the few described active site inhibitors of RRM1. We herein describe the identification of novel 5'-amino gemcitabine analogs as potent RRM1 inhibitors through in-cell phenotypic screening.


Subject(s)
Deoxycytidine/analogs & derivatives , Tumor Suppressor Proteins/antagonists & inhibitors , Cell Line, Tumor , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Ribonucleoside Diphosphate Reductase , Structure-Activity Relationship , Gemcitabine
13.
Bioorg Med Chem Lett ; 21(1): 471-4, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21094607

ABSTRACT

Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Binding Sites , Catalytic Domain , Checkpoint Kinase 1 , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 18(4): 1318-22, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18242983

ABSTRACT

Comprehensive SAR studies were undertaken in the 3,4-diaminocyclobut-3-ene-1,2-dione class of CXCR2/CXCR1 receptor antagonists to explore the role of the heterocycle on chemokine receptor binding affinities, functional activity, as well as oral exposure in rat. The nature of the heterocycle as well as the requisite substitution pattern around the heterocycle was shown to have a dramatic effect on the overall biological profile of this class of compounds. The furyl class, particularly the 4-halo adducts, was found to possess superior binding affinities for both the CXCR2 and CXCR1 receptors, functional activity, as well as oral exposure in rat versus other heterocyclic derivatives.


Subject(s)
Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Diamines/chemistry , Diamines/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Cell Line , Cyclobutanes/chemical synthesis , Diamines/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Mice , Stereoisomerism , Structure-Activity Relationship
18.
ACS Med Chem Lett ; 9(8): 815-820, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30128073

ABSTRACT

Herein we describe the development of a series of pyrazolopyrimidinone phosphodiesterase 2A (PDE2) inhibitors using structure-guided lead identification and design. The series was derived from informed chemotype replacement based on previously identified internal leads. The initially designed compound 3, while potent on PDE2, displayed unsatisfactory selectivity against the other PDE2 isoforms. Compound 3 was subsequently optimized for improved PDE2 activity and isoform selectivity. Insights into the origins of PDE2 selectivity are described and verified using cocrystallography. An optimized lead, 4, demonstrated improved performance in both a rodent and a nonhuman primate cognition model.

19.
J Med Chem ; 60(1): 290-306, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27808515

ABSTRACT

We describe the research that led to the discovery of compound 40 (ruzasvir, MK-8408), a pan-genotypic HCV nonstructural protein 5A (NS5A) inhibitor with a "flat" GT1 mutant profile. This NS5A inhibitor contains a unique tetracyclic indole core while maintaining the imidazole-proline-valine Moc motifs of our previous NS5A inhibitors. Compound 40 is currently in early clinical trials and is under evaluation as part of an all-oral DAA regimen for the treatment of chronic HCV infection.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Polymorphism, Genetic , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Cell Line , Dogs , Haplorhini , Hepacivirus/genetics , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Pyrrolidines/pharmacokinetics , Rats , Structure-Activity Relationship , Thiazoles/pharmacokinetics
20.
ACS Med Chem Lett ; 8(12): 1292-1297, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259750

ABSTRACT

Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.

SELECTION OF CITATIONS
SEARCH DETAIL