Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Eur Respir J ; 60(6)2022 12.
Article in English | MEDLINE | ID: mdl-35777766

ABSTRACT

BACKGROUND: COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS: We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS: The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION: CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Chymases/metabolism , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Airway Remodeling , Pulmonary Emphysema/etiology , Lung , Emphysema/complications , Inflammation/metabolism , Mice, Inbred C57BL
2.
Respirology ; 26(5): 442-451, 2021 05.
Article in English | MEDLINE | ID: mdl-33455043

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. METHODS: We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC. RESULTS: Increased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients. CONCLUSION: Increased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications.


Subject(s)
Asthma/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Asthma/epidemiology , Asthma/metabolism , Australia/epidemiology , COVID-19/epidemiology , COVID-19/metabolism , Comorbidity , Female , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/biosynthesis
4.
Clin Sci (Lond) ; 132(14): 1615-1627, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30006481

ABSTRACT

Increased airway smooth muscle (ASM) mass is observed in chronic obstructive pulmonary disease (COPD), which is correlated with disease severity and negatively affects lung function in these patients. Thus, there is clear unmet clinical need for finding new therapies which can target airway remodeling and disease progression in COPD. Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) activated by various stress stimuli, including reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and is known to regulate cell proliferation. ASM cells from COPD patients are hyperproliferative to mitogens in vitro However, the role of ASK1 in ASM growth is not established. Here, we aim to determine the effects of ASK1 inhibition on ASM growth and pro-mitogenic signaling using ASM cells from COPD patients. We found greater expression of ASK1 in ASM bundles of COPD lung when compared with non-COPD. Pre-treatment of ASM cells with highly selective ASK1 inhibitor, TC ASK 10 resulted in a dose-dependent reduction in mitogen (FBS, PDGF, and EGF; 72 h)-induced ASM growth as measured by CyQUANT assay. Further, molecular targetting of ASK1 using siRNA in ASM cells prevented mitogen-induced cell growth. In addition, to anti-mitogenic potential, ASK1 inhibitor also prevented TGFß1-induced migration of ASM cells in vitro Immunoblotting revealed that anti-mitogenic effects are mediated by C-Jun N-terminal kinase (JNK) and p38MAP kinase-signaling pathways as evident by reduced phosphorylation of downstream effectors JNK1/2 and p38MAP kinases, respectively, with no effect on extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2). Collectively, these findings establish the anti-mitogenic effect of ASK1 inhibition and identify a novel pathway that can be targetted to reduce or prevent excessive ASM mass in COPD.


Subject(s)
Cell Movement/genetics , Cell Proliferation/genetics , Lung/metabolism , MAP Kinase Kinase Kinase 5/genetics , Myocytes, Smooth Muscle/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Enzyme Inhibitors/pharmacology , Humans , Lung/cytology , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mitogens/pharmacology , Muscle, Smooth/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , RNA Interference , Transforming Growth Factor beta1/pharmacology
5.
N Engl J Med ; 381(25): 2483-2484, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31851815
6.
Respirology ; 22(6): 1125-1132, 2017 08.
Article in English | MEDLINE | ID: mdl-28326668

ABSTRACT

BACKGROUND AND OBJECTIVE: The objective of this study was to enumerate total cells and the number of inflammatory cell differentials in large airways (LAs) versus small airways (SAs) of mild-moderate COPD, and against appropriate controls. METHODS: For LA, we used endobronchial biopsies and for SA resected lung tissues. Immunostaining was enumerated (cells per mm2 ) for macrophages, neutrophils, CD4 and CD8 T cells in the lamina propria (LP) up to 150 µM deep for LA and full wall thickness for SA. RESULTS: We confirmed hypocellularity in the LA and in the SA wall in smokers and COPD (P < 0.001). LA cellularity was least in current smokers with COPD (COPD-CS) (P < 0.01), while SA cellularity was similar across smoker/COPD groups. LA neutrophils were decreased in COPD-CS (P < 0.01), while SA neutrophil counts were unchanged. Compared with controls, LA macrophage numbers in COPD were significantly lower (P < 0.05), with SA macrophage numbers unchanged. A significant increase was observed in SA CD8+ cells in both normal smokers (P < 0.01) and COPD-CS (P < 0.001) but not in LA. CONCLUSION: These unique data indicate that the current model for airway wall inflammation in COPD is oversimplified, and contrast with innate inflammatory activation in the lumen, at least in mild-moderate disease. Any abnormalities in airway wall cell differentials are small, although exaggerated in percentage terms.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Inflammation/pathology , Macrophages , Neutrophils , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/pathology , Adult , Aged , Aged, 80 and over , Bronchi/pathology , CD4 Lymphocyte Count , Female , Humans , Inflammation/immunology , Lung/pathology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , Tobacco Smoking/pathology , Young Adult
7.
Cell Rep ; 42(6): 112525, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243592

ABSTRACT

Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Neutrophils , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Inflammation
8.
Pharmacol Ther ; 225: 107839, 2021 09.
Article in English | MEDLINE | ID: mdl-33774068

ABSTRACT

Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-ß induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.


Subject(s)
Lung Diseases/drug therapy , Lung Diseases/physiopathology , Airway Remodeling/physiology , Asthma/drug therapy , Asthma/physiopathology , Calcium-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Fibroblasts , Fibrosis/physiopathology , Glycoproteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/physiopathology , Matrix Metalloproteinases/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Transforming Growth Factor beta
9.
Pharmacology ; 85(5): 280-5, 2010.
Article in English | MEDLINE | ID: mdl-20424496

ABSTRACT

Phosphodiesterases (PDE) are enzymes that catalyze the hydrolysis of cAMP/cGMP to 5'-AMP/GMP. In vitro assays have routinely assayed cAMP/cGMP levels as a direct indicator of PDE activity. Earlier PDE assays depended on radiometric detection of radiolabeled cAMP. Of late, nonradiometric cAMP detection systems have been developed that are cheaper and more amenable to high-throughput screening. Two such assays, namely the enzyme fragment complementation technology and homogeneous time-resolved fluorescence assays, are currently used for monitoring cAMP as a correlate for G-protein-coupled-receptor-induced cellular signaling events. Here, we have compared and validated both of these assays for the measurement of PDE4 enzyme activity in cell-free systems.


Subject(s)
Cyclic AMP/metabolism , Enzyme Assays/methods , Phosphoric Diester Hydrolases/metabolism , Cell-Free System , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Enzyme Multiplied Immunoassay Technique , Fluoroimmunoassay , Kinetics , Limit of Detection , Luminescent Agents , Osmolar Concentration , Reproducibility of Results , Signal Transduction , Time Factors
10.
Protein Expr Purif ; 61(2): 149-54, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18547817

ABSTRACT

Phosphodiesterase plays an important role in regulating inflammatory pathways and T cell function. The development of phosphodiesterase 7 inhibitor may give better efficacy profile over phosphodiesterase 4 inhibitors. However, the recombinant phosphodiesterase 7 is required in large quantity for high-throughput screening of new drugs by in vitro enzymatic assays. In the present study, recombinant human PDE7A1 was expressed in Dictyostelium discoideum under the control of constitutively active actin-15 promoter. The cytosolic localization of the expressed protein was confirmed by immunofluorescence studies. Upto 2 mg of recombinant protein was purified using His-Tag affinity column chromatography followed by ion-exchange Resource Q column purification. The recombinant protein expressed in D. discoideum followed Michaelis-Menten kinetics similar to the protein expressed in mammalian system and showed no major changes in affinity to substrate or inhibitors. Thus, our study clearly demonstrates a robust expression system for successful bulk production of pharmacologically active isoform of human PDE7A1 required for high-throughput assays.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 7/biosynthesis , Cyclic Nucleotide Phosphodiesterases, Type 7/isolation & purification , Dictyostelium/metabolism , Animals , Cells, Cultured , Cloning, Molecular , Cyclic AMP/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 7/chemistry , Dictyostelium/chemistry , Dictyostelium/cytology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
11.
Expert Opin Investig Drugs ; 16(10): 1585-99, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17922623

ABSTRACT

Targeting phosphodiesterase IV (PDE-IV) with small-molecule inhibitors as a therapeutic for chronic inflammatory disorders has been an active area of research interest for many years. The major drawback, however, has been to develop pharmacophores that would differentiate between targeting isoforms of PDE-IV associated with inflammation, as opposed to those that cause emesis, a major side effect associated with PDE-IV inhibition. Several different approaches have been employed, including designing subtype selective PDE-IV inhibitors. A recent approach has been to develop chemotypes that target PDE-VII, a cAMP-specific PDE, expressed widely in immune and pro-inflammatory cells. It is hypothesized that dual inhibitors, which function to inhibit both PDE-IV and VII, may achieve a higher therapeutic index and thereby exhibit a lower propensity to cause adverse side effects that are characteristic when targeting PDE-IV alone. This review focuses on the major classes of compounds that are presently being studied for their potential to inhibit PDE-VII and discusses the available data in the development of dual PDE-IV and -VII inhibitors, their biologic activity and their scope as a therapeutic choice in chronic inflammatory diseases.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Inflammation/drug therapy , Phosphodiesterase Inhibitors/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Chronic Disease , Cyclic Nucleotide Phosphodiesterases, Type 4 , Cyclic Nucleotide Phosphodiesterases, Type 7 , Humans , Phosphodiesterase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL