Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Publication year range
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38744280

ABSTRACT

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Subject(s)
Centromere , Cohesins , Kinetochores , Mitosis , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chickens , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
2.
Nat Rev Genet ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886215

ABSTRACT

Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.

3.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35090599

ABSTRACT

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomes , DNA/metabolism , Lymphoma, B-Cell/metabolism , Nuclear Proteins/metabolism , Prophase , Proteome , Proteomics , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Chickens , Chromatin/genetics , DNA/genetics , Lamin Type B/genetics , Lamin Type B/metabolism , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Nuclear Proteins/genetics , Protein Binding , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Time Factors
4.
Nat Rev Mol Cell Biol ; 16(7): 443-9, 2015 07.
Article in English | MEDLINE | ID: mdl-25991376

ABSTRACT

The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.


Subject(s)
Autoantigens/isolation & purification , Centromere Protein B/isolation & purification , Centromere/metabolism , Chromosomal Proteins, Non-Histone/isolation & purification , Animals , Autoantigens/metabolism , Centromere Protein A , Centromere Protein B/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Humans , Kinetochores/metabolism
5.
J Cell Sci ; 136(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36695333

ABSTRACT

The chromosome periphery is a network of proteins and RNAs that coats the outer surface of mitotic chromosomes. Despite the identification of new components, the functions of this complex compartment are poorly characterised. In this study, we identified a novel chromosome periphery-associated protein, CCDC86 (also known as cyclon). Using a combination of RNA interference, microscopy and biochemistry, we studied the functions of CCDC86 in mitosis. CCDC86 depletion resulted in partial disorganisation of the chromosome periphery with alterations in the localisation of Ki-67 (also known as MKI67) and nucleolin (NCL), and the formation of abnormal cytoplasmic aggregates. Furthermore, CCDC86-depleted cells displayed errors in chromosome alignment, altered spindle length and increased apoptosis. These results suggest that, within the chromosome periphery, different subcomplexes that include CCDC86, nucleolin and B23 (nucleophosmin or NPM1) are required for mitotic spindle regulation and correct kinetochore-microtubule attachments, thus contributing to chromosome segregation in mitosis. Moreover, we identified CCDC86 as a MYCN-regulated gene, the expression levels of which represent a powerful marker for prognostic outcomes in neuroblastoma.


Subject(s)
Mitosis , Spindle Apparatus , Humans , Ki-67 Antigen/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Mitosis/genetics , Chromosomes/metabolism , Chromosome Segregation/genetics , Kinetochores/metabolism , Microtubules/metabolism , HeLa Cells
6.
Cell ; 142(5): 810-21, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20813266

ABSTRACT

Despite many decades of study, mitotic chromosome structure and composition remain poorly characterized. Here, we have integrated quantitative proteomics with bioinformatic analysis to generate a series of independent classifiers that describe the approximately 4,000 proteins identified in isolated mitotic chromosomes. Integrating these classifiers by machine learning uncovers functional relationships between protein complexes in the context of intact chromosomes and reveals which of the approximately 560 uncharacterized proteins identified here merits further study. Indeed, of 34 GFP-tagged predicted chromosomal proteins, 30 were chromosomal, including 13 with centromere-association. Of 16 GFP-tagged predicted nonchromosomal proteins, 14 were confirmed to be nonchromosomal. An unbiased analysis of the whole chromosome proteome from genetic knockouts of kinetochore protein Ska3/Rama1 revealed that the APC/C and RanBP2/RanGAP1 complexes depend on the Ska complex for stable association with chromosomes. Our integrated analysis predicts that up to 97 new centromere-associated proteins remain to be discovered in our data set.


Subject(s)
Chromosomal Proteins, Non-Histone/analysis , Chromosomes/chemistry , Mitosis , Proteomics/methods , Animals , Cell Line , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Humans , Kinetochores/metabolism , Spindle Apparatus/metabolism
7.
Nat Rev Mol Cell Biol ; 13(12): 789-803, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23175282

ABSTRACT

Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal and membrane trafficking events. These processes are regulated by the competing actions of protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In conjunction with inner centromere protein (INCENP), borealin (also known as Dasra) and survivin it forms the chromosomal passenger complex (CPC). This complex targets to different locations at differing times during mitosis, where it regulates key mitotic events: correction of chromosome-microtubule attachment errors; activation of the spindle assembly checkpoint; and construction and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of the CPC has seen it develop from a mere passenger riding on the chromosomes to one of the main controllers of mitosis.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Mitosis , Animals , Aurora Kinase B , Aurora Kinases , Cell Cycle Proteins/physiology , Centromere/physiology , Drosophila melanogaster/physiology , Humans , Mice , Microtubules/physiology , Protein Serine-Threonine Kinases/physiology , Spindle Apparatus/physiology
8.
Mol Cell ; 64(4): 790-802, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27840028

ABSTRACT

Recent studies have revealed the importance of Ki-67 and the chromosome periphery in chromosome structure and segregation, but little is known about this elusive chromosome compartment. Here we used correlative light and serial block-face scanning electron microscopy, which we term 3D-CLEM, to model the entire mitotic chromosome complement at ultra-structural resolution. Prophase chromosomes exhibit a highly irregular surface appearance with a volume smaller than metaphase chromosomes. This may be because of the absence of the periphery, which associates with chromosomes only after nucleolar disassembly later in prophase. Indeed, the nucleolar volume almost entirely accounts for the extra volume found in metaphase chromosomes. Analysis of wild-type and Ki-67-depleted chromosomes reveals that the periphery comprises 30%-47% of the entire chromosome volume and more than 33% of the protein mass of isolated mitotic chromosomes determined by quantitative proteomics. Thus, chromatin makes up a surprisingly small percentage of the total mass of metaphase chromosomes.


Subject(s)
Chromatin/ultrastructure , Chromosomes/ultrastructure , Metaphase , Microscopy, Electron, Scanning/methods , Prophase , Cell Line, Transformed , Cell Nucleolus/chemistry , Cell Nucleolus/ultrastructure , Chromatin/chemistry , Chromosomes/chemistry , Gene Expression , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Retinal Pigment Epithelium/chemistry , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/ultrastructure
9.
Cell Mol Life Sci ; 80(5): 121, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37043028

ABSTRACT

Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence. Association of NORs with nucleoli was increased when constituent rDNA was transcribed and may be also affected by the status of heterochromatin blocks formed next to the rDNA arrays. Furthermore, our data suggest that a relatively small size DJ region, highly conserved in evolution, is also involved, along with the rDNA repeats, in the localization of p-arms of acrocentric chromosomes in nucleoli. Thus, we infer a cooperative action of rDNA sequence-stimulated by its activity-and sequences distal to rDNA contributing to incorporation into nucleoli. Analysis of NOR sequences also identified LncRNA_038958 in the DJ, a candidate transcript with the region of the suggested promoter that is located close to the DJ/rDNA boundary and contains CTCF binding sites. This LncRNA may affect RNA Polymerase I and/or nucleolar activity. Our findings provide the basis for future studies to determine which RNAs and proteins interact critically with NOR sequences to organize the higher-order structure of nucleoli and their function in normal cells and pathological states.


Subject(s)
Nucleolus Organizer Region , RNA, Long Noncoding , Humans , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , DNA, Ribosomal/genetics , RNA, Long Noncoding/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Chromosomes, Human/metabolism
10.
Semin Cell Dev Biol ; 117: 7-29, 2021 09.
Article in English | MEDLINE | ID: mdl-33836947

ABSTRACT

Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.


Subject(s)
Chromosomes/metabolism , Mitosis/genetics , Humans
11.
EMBO J ; 37(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29467217

ABSTRACT

The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Mitosis , Cell Line, Tumor , Centromere/metabolism , Chromobox Protein Homolog 5 , Humans , Phosphorylation
12.
J Cell Sci ; 133(18)2020 09 15.
Article in English | MEDLINE | ID: mdl-32934012

ABSTRACT

During mitosis, the chromosomal passenger complex (CPC) ensures the faithful transmission of the genome. The CPC is composed of the enzymatic component Aurora B (AURKB) and the three regulatory and targeting components borealin, INCENP, and survivin (also known as BIRC5). Although the CPC is known to be involved in diverse mitotic events, it is still unclear how CPC function terminates after mitosis. Here we show that borealin is ubiquitylated by the anaphase promoting complex/cyclosome (APC/C) and its cofactor Cdh1 (also known as FZR1) and is subsequently degraded in G1 phase. Cdh1 binds to regions within the N terminus of borealin that act as a non-canonical degron. Aurora B has also been shown previously to be degraded by the APC/CCdh1 from late mitosis to G1. Indeed, Cdh1 depletion sustains an Aurora B activity with stable levels of borealin and Aurora B throughout the cell cycle, and causes reduced efficiency of DNA replication after release from serum starvation. Notably, inhibition of Aurora B kinase activity improves the efficiency of DNA replication in Cdh1-depleted cells. We thus propose that APC/CCdh1 terminates CPC activity upon mitotic exit and thereby contributes to proper control of DNA replication.


Subject(s)
Cell Cycle Proteins , Mitosis , Anaphase-Promoting Complex-Cyclosome/genetics , Animals , Aurora Kinase B/genetics , Cell Cycle Proteins/genetics , Cytoskeleton , G1 Phase , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout
13.
J Cell Sci ; 133(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32591481

ABSTRACT

Cell division ends when two daughter cells physically separate via abscission, the cleavage of the intercellular bridge. It is not clear how the anti-parallel microtubule bundles bridging daughter cells are severed. Here, we present a novel abscission mechanism. We identified chromokinesin KIF4A, which is adjacent to the midbody during cytokinesis, as being required for efficient abscission. KIF4A is regulated by post-translational modifications. We evaluated modification of KIF4A by the ubiquitin-like protein SUMO. We mapped lysine 460 in KIF4A as the SUMO acceptor site and employed CRISPR-Cas9-mediated genome editing to block SUMO conjugation of endogenous KIF4A. Failure to SUMOylate this site in KIF4A delayed cytokinesis. SUMOylation of KIF4A enhanced the affinity for the microtubule destabilizer stathmin 1 (STMN1). We here present a new level of abscission regulation through the dynamic interactions between KIF4A and STMN1 as controlled by SUMO modification of KIF4A.


Subject(s)
Mitosis , Stathmin , Cytokinesis/genetics , DNA-Binding Proteins , HeLa Cells , Humans , Kinesins/genetics , Nuclear Proteins , Stathmin/genetics
14.
J Cell Sci ; 133(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32576667

ABSTRACT

Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.


Subject(s)
Chromosomes, Artificial, Human , Centromere/genetics , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosome Segregation/genetics , Chromosomes, Artificial, Human/genetics , Chromosomes, Artificial, Human/metabolism , Epigenesis, Genetic , Heterochromatin , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Kinetochores/metabolism
15.
J Cell Sci ; 133(15)2020 08 11.
Article in English | MEDLINE | ID: mdl-32661090

ABSTRACT

CENP-B binds to CENP-B boxes on centromeric satellite DNAs (known as alphoid DNA in humans). CENP-B maintains kinetochore function through interactions with CENP-A nucleosomes and CENP-C. CENP-B binding to transfected alphoid DNA can induce de novo CENP-A assembly, functional centromere and kinetochore formation, and subsequent human artificial chromosome (HAC) formation. Furthermore, CENP-B also facilitates H3K9 (histone H3 lysine 9) trimethylation on alphoid DNA, mediated by Suv39h1, at ectopic alphoid DNA integration sites. Excessive heterochromatin invasion into centromere chromatin suppresses CENP-A assembly. It is unclear how CENP-B controls such different chromatin states. Here, we show that the CENP-B acidic domain recruits histone chaperones and many chromatin modifiers, including the H3K36 methylase ASH1L, as well as the heterochromatin components Suv39h1 and HP1 (HP1α, ß and γ, also known as CBX5, CBX1 and CBX3, respectively). ASH1L facilitates the formation of open chromatin competent for CENP-A assembly on alphoid DNA. These results indicate that CENP-B is a nexus for histone modifiers that alternatively promote or suppress CENP-A assembly by mutually exclusive mechanisms. Besides the DNA-binding domain, the CENP-B acidic domain also facilitates CENP-A assembly de novo on transfected alphoid DNA. CENP-B therefore balances CENP-A assembly and heterochromatin formation on satellite DNA.


Subject(s)
Chromatin , Heterochromatin , Autoantigens/genetics , Centromere , Centromere Protein A/genetics , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Epigenesis, Genetic , Heterochromatin/genetics , Humans
16.
Genome Res ; 29(10): 1719-1732, 2019 10.
Article in English | MEDLINE | ID: mdl-31515286

ABSTRACT

One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.


Subject(s)
Chromosomal Instability/genetics , Chromosomes, Human/genetics , Protein Kinases/genetics , RNA, Small Interfering/genetics , Aneuploidy , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Line, Tumor , Chromosomes, Artificial, Human/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Mitosis/genetics , Protein Kinases/isolation & purification , Protein Serine-Threonine Kinases/genetics , RNA, Double-Stranded/genetics , Transgenes , Translocation, Genetic/genetics
17.
J Cell Sci ; 132(21)2019 11 06.
Article in English | MEDLINE | ID: mdl-31601613

ABSTRACT

Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Microtubules/metabolism , Mutation/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Cytokinesis/physiology , Humans , Mitosis/physiology , rho-Associated Kinases/metabolism , Polo-Like Kinase 1
18.
J Cell Sci ; 131(9)2018 05 01.
Article in English | MEDLINE | ID: mdl-29618633

ABSTRACT

In metazoa, the Nup107 complex (also known as the nucleoporin Y-complex) plays a major role in formation of the nuclear pore complex in interphase and is localised to kinetochores in mitosis. The Nup107 complex shares a single highly conserved subunit, Seh1 (also known as SEH1L in mammals) with the GATOR2 complex, an essential activator of mTORC1 kinase. mTORC1/GATOR2 has a central role in the coordination of cell growth and proliferation. Here, we use chemical genetics and quantitative chromosome proteomics to study the role of the Seh1 protein in mitosis. Surprisingly, Seh1 is not required for the association of the Nup107 complex with mitotic chromosomes, but it is essential for the association of both the GATOR2 complex and nucleoporin Nup153 with mitotic chromosomes. Our analysis also reveals a role for Seh1 at human centromeres, where it is required for efficient localisation of the chromosomal passenger complex (CPC). Furthermore, this analysis detects a functional interaction between the Nup107 complex and the small kinetochore protein SKAP (also known as KNSTRN).


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomes, Human , Mitosis/physiology , Nuclear Pore Complex Proteins/metabolism , Gene Knockout Techniques , HCT116 Cells , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitosis/genetics , Nuclear Pore Complex Proteins/genetics , Transfection
19.
J Cell Sci ; 131(4)2018 02 22.
Article in English | MEDLINE | ID: mdl-29361541

ABSTRACT

The requirement for condensin in chromosome formation in somatic cells remains unclear, as imperfectly condensed chromosomes do form in cells depleted of condensin by conventional methodologies. In order to dissect the roles of condensin at different stages of vertebrate mitosis, we have established a versatile cellular system that combines auxin-mediated rapid degradation with chemical genetics to obtain near-synchronous mitotic entry of chicken DT40 cells in the presence and absence of condensin. We analyzed the outcome by live- and fixed-cell microscopy methods, including serial block face scanning electron microscopy with digital reconstruction. Following rapid depletion of condensin, chromosomal defects were much more obvious than those seen after a slow depletion of condensin. The total mitotic chromatin volume was similar to that in control cells, but a single mass of mitotic chromosomes was clustered at one side of a bent mitotic spindle. Cultures arrest at prometaphase, eventually exiting mitosis without segregating chromosomes. Experiments where the auxin concentration was titrated showed that different condensin levels are required for anaphase chromosome segregation and formation of a normal chromosome architecture.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenosine Triphosphatases/genetics , Chromatin/ultrastructure , Chromosomes/ultrastructure , DNA-Binding Proteins/genetics , Mitosis/genetics , Multiprotein Complexes/genetics , Adenosine Triphosphatases/metabolism , Animals , Chickens , Chromatin/genetics , Chromatin/metabolism , Chromosome Aberrations , Chromosome Segregation/genetics , Chromosomes/genetics , Chromosomes/metabolism , DNA-Binding Proteins/metabolism , Indoleacetic Acids/pharmacology , Microscopy, Electron, Scanning , Multiprotein Complexes/metabolism , Proteolysis/drug effects
20.
Proc Natl Acad Sci U S A ; 114(12): 3133-3138, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265097

ABSTRACT

During cell division, interactions between microtubules and chromosomes are mediated by the kinetochore, a proteinaceous structure located at the primary constriction of chromosomes. In addition to the centromere histone centromere protein A (CENP-A), 15 other members of the constitutive centromere associated network (CCAN) participate in the formation of a chromatin-associated scaffold that supports kinetochore structure. We performed a targeted screen analyzing unfolded centrochromatin from CENP-depleted chromosomes. Our results revealed that CENP-C and CENP-S are critical for the stable folding of mitotic kinetochore chromatin. Multipeak fitting algorithms revealed the presence of an organized pattern of centrochromatin packing consistent with arrangement of CENP-A-containing nucleosomes into up to five chromatin "subunits"-each containing roughly 20-30 nucleosomes. These subunits could be either layers of a boustrophedon or small loops of centromeric chromatin.


Subject(s)
Kinetochores/chemistry , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Protein Unfolding , Animals , Cell Line , Centromere/chemistry , Centromere Protein A/chemistry , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chickens , Chromatin/chemistry , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Kinetochores/metabolism , Microscopy, Fluorescence , Mitosis , Mutation , Recombinant Fusion Proteins , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL