Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Med Genet ; 60(6): 523-532, 2023 06.
Article in English | MEDLINE | ID: mdl-36822643

ABSTRACT

PURPOSE AND SCOPE: The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT: A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS: Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Physicians , Humans , Child , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Canada , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Genetic Testing/methods , Intellectual Disability/diagnosis , Intellectual Disability/genetics
2.
Clin Genet ; 103(3): 288-300, 2023 03.
Article in English | MEDLINE | ID: mdl-36353900

ABSTRACT

We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.


Subject(s)
Genetic Testing , Humans , Genetic Testing/methods , Ontario/epidemiology , Exome Sequencing
3.
Am J Med Genet A ; 191(2): 510-517, 2023 02.
Article in English | MEDLINE | ID: mdl-36401557

ABSTRACT

Clinical exome sequencing (ES) is the most comprehensive genomic test to identify underlying genetic diseases in Canada. We performed this retrospective cohort study to investigate the diagnostic yield of clinical ES in adulthood. Inclusion criteria were: (1) Adult patients ≥18 years old; (2) Patients underwent clinical ES between January 1 and December 31, 2021; (3) Patients were seen in the Department of Medical Genetics. We reviewed patient charts. We applied American College of Medical Genetics and Genomics and the Association for Molecular Pathology variant classification guidelines for interpretation of variants. Non-parametric Fisher's exact statistical test was used. Seventy-seven patients underwent clinical ES. Fourteen different genetic diseases were confirmed in 15 patients: FBXO11, MYH7, MED13L, NSD2, ANKRD11 (n = 2), SHANK3, RHOBTB2, CDKL5, TRIO, TCF4, SCN1, SMAD3, POGZ, and EIF2B3 diseases. The diagnostic yield of clinical ES was 19.5%. Patients with a genetic diagnosis had a significantly higher frequency of neurodevelopmental disorders than those with no genetic diagnosis (p = 0.00339). The diagnostic yield of clinical ES was the highest in patients with seizures (35.7%), and with progressive neurodegenerative diseases (33.3%). Clinical ES is a helpful genomic test to provide genetic diagnoses to the patients who are referred to medical genetic clinics due to suspected genetic diseases in adulthood to end their diagnostic odyssey. Targeted next generation sequencing panels for specific phenotypes may decrease the cost of genomic test in adulthood.


Subject(s)
Genetics, Medical , Neurodevelopmental Disorders , Humans , Exome Sequencing , Genetic Testing , Neurodevelopmental Disorders/genetics , Phenotype , Retrospective Studies
4.
Am J Med Genet A ; 191(2): 338-347, 2023 02.
Article in English | MEDLINE | ID: mdl-36331261

ABSTRACT

The introduction of clinical exome sequencing (ES) has provided a unique opportunity to decrease the diagnostic odyssey for patients living with a rare genetic disease (RGD). ES has been shown to provide a diagnosis in 29%-57% of patients with a suspected RGD, with as many as 70% remaining undiagnosed. There is a need to advance the clinical model of care by more formally integrating approaches that were previously considered research into an enhanced diagnostic workflow. We developed an Exome Clinic, which set out to evaluate a workflow for improving the diagnostic yield of ES for patients with an undiagnosed RGD. Here, we report the outcomes of 47 families who underwent clinical ES in the first year of the clinic. The diagnostic yield from clinical ES was 40% (19/47). Families who remained undiagnosed after ES had the opportunity for follow-up studies that included phenotyping and candidate variant segregation in relatives, genomic matchmaking, and ES reanalysis. This enhanced diagnostic workflow increased the diagnostic yield to 55% (26/47), predominantly through the resolution of variants and genes of uncertain significance. We advocate that this approach be integrated into mainstream clinical practice and highlight the importance of a coordinated translational approach for patients with RGD.


Subject(s)
Genomics , Rare Diseases , Humans , Exome Sequencing , Canada , Rare Diseases/diagnosis , Rare Diseases/genetics , Oligopeptides/genetics , Genetic Testing
5.
Brain ; 145(7): 2301-2312, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35373813

ABSTRACT

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Subject(s)
ADAM Proteins , Brain Diseases , Drug Resistant Epilepsy , Nerve Tissue Proteins , ADAM Proteins/genetics , ADAM Proteins/metabolism , Atrophy , Brain Diseases/genetics , Disks Large Homolog 4 Protein , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
6.
Infect Immun ; 89(10): e0072820, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34152830

ABSTRACT

Malaria infects millions of people every year, and despite recent advances in controlling disease spread, such as vaccination, it remains a global health concern. The circumsporozoite protein (CSP) has long been acknowledged as a key target in antimalarial immunity. Leveraging the DNA vaccine platform against this formidable pathogen, the following five synthetic DNA vaccines encoding variations of CSP were designed and studied: 3D7, GPI1, ΔGPI, TM, and DD2. Among the single CSP antigen constructs, a range of immunogenicity was observed with ΔGPI generating the most robust immunity. In an intravenous (i.v.) sporozoite challenge, the best protection among vaccinated mice was achieved by ΔGPI, which performed almost as well as the monoclonal antibody 311 (MAb 311) antibody control. Further analyses revealed that ΔGPI develops high-molecular-weight multimers in addition to monomeric CSP. We then compared the immunity generated by ΔGPI versus synDNA mimics for the antimalaria vaccines RTS,S and R21. The anti-CSP antibody responses induced were similar among these three immunogens. T cell responses demonstrated that ΔGPI induced a more focused anti-CSP response. In an infectious mosquito challenge, all three of these constructs generated inhibition of liver-stage infection as well as immunity from blood-stage parasitemia. This study demonstrates that synDNA mimics of complex malaria immunogens can provide substantial protection as can a novel synDNA vaccine ΔGPI.


Subject(s)
Immunogenicity, Vaccine/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Cell Line , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Sporozoites/immunology , Vaccination/methods
7.
Clin Genet ; 100(5): 637-640, 2021 11.
Article in English | MEDLINE | ID: mdl-34370298

ABSTRACT

HECT And RLD Domain-Containing E3 Ubiquitin Protein Ligase 2, or HERC2, codes an ubiquitin ligase that has an important role in key cellular processes including cell cycle regulation, DNA repair, mitochondrial functions, and spindle formation during mitosis. While HERC2 Neurodevelopmental Disorder in Old Order Amish is a well characterized human disorder involving HERC2, bi-allelic HERC2 loss of function has only been described in three families and results in a more severe neurodevelopmental disorder. Herein, we delineate the HERC2 loss of function phenotype by describing three previously unreported patients, and by summarizing the molecular and phenotypic information of all known HERC2 missense variants and biallelic loss of function patients. Collectively, these twelve individuals present with recurring features that define a syndrome with varying combinations of severe neurodevelopmental delay, structural brain anomalies, seizures, hypotonia, feeding difficulties, hearing and vision issues, and renal anomalies. This study describes a distinct neurodevelopmental disorder, emphasizing the importance of further characterization of HERC2-related disorders, as well as highlighting the importance of ongoing work into understanding these critical neurodevelopmental pathways.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Loss of Function Mutation , Mutation, Missense , Phenotype , Ubiquitin-Protein Ligases/genetics , Alleles , Amino Acid Substitution , Genetic Association Studies/methods , Genotype , Humans
8.
Clin Genet ; 97(6): 835-843, 2020 06.
Article in English | MEDLINE | ID: mdl-32162313

ABSTRACT

Exome sequencing (ES) is an effective diagnostic tool with a high yield in consanguineous families. However, how diagnostic yield and mode of inheritance relate to family structure has not been well delineated. We reviewed ES results from families enrolled in the Care4Rare Canada research consortium with various degrees of consanguinity. We contrasted the diagnostic yield in families with parents who are second cousins or closer ("close" consanguinity) vs those more distantly related or from isolated populations ("presumed" consanguinity). We further stratified by number of affected individuals (multiple affected ["multiplex"] vs single affected [simplex]). The overall yield in 116 families was 45.7% (n = 53) with no significant difference between subgroups. Homozygous variants accounted for 100% and 75% of diagnoses in close and presumed consanguineous multiplex families, respectively. In simplex presumed consanguineous families, a striking 46.2% of diagnoses were due to de novo variants, vs only 11.8% in simplex closely consanguineous families (88.2% homozygous). Our data underscores the high yield of ES in consanguineous families and highlights that while a singleton approach may frequently be reasonable and a responsible use of resources, trio sequencing should be strongly considered in simplex families in the absence of confirmed consanguinity given the proportion of de novo variants.


Subject(s)
Exome/genetics , Genetic Diseases, Inborn/cerebrospinal fluid , Genetic Testing , Canada/epidemiology , Consanguinity , Female , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetics, Population/trends , Homozygote , Humans , Male , Mutation/genetics , Pedigree , Exome Sequencing
9.
Ann Neurol ; 86(2): 225-240, 2019 08.
Article in English | MEDLINE | ID: mdl-31187503

ABSTRACT

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Subject(s)
Mutation/genetics , Polyneuropathies/drug therapy , Polyneuropathies/genetics , Pyridoxal Kinase/genetics , Pyridoxal Phosphate/administration & dosage , Vitamin B Complex/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Dietary Supplements , Female , Gene Regulatory Networks/genetics , Humans , Male , Treatment Outcome
10.
Am J Med Genet C Semin Med Genet ; 178(4): 458-463, 2018 12.
Article in English | MEDLINE | ID: mdl-30580481

ABSTRACT

For years, the genetics community has estimated the number of individual rare genetic diseases to be approximately 6,000-8,000. A commonly quoted derivation of this estimate is based on the simple addition of the number of phenotypic entries with and without confirmed molecular etiologies in the Online Mendelian Inheritance in Man (OMIM®). Here, we examine the validity of this estimation by mining the phenotypic entries in OMIM that are of likely or suspected Mendelian inheritance without a molecular cause (MIM number prefix "%" or "null"). Of the 3,204 unsolved phenotypic entries in OMIM, only two-thirds (2,034 entries) represented rare diseases. Of these, 8% were considered "well-established" based on their description in commonly used reference textbooks. We hypothesize based on the large proportion of entries that represent single families reported prior to 2011, that a number of the unsolved entries represent pathogenic variants in known genes. The novel gene discovery potential of these entries is therefore likely lower than originally thought. Given that the majority of the ~300 new disease-gene associations curated each year by OMIM were never associated with a "%" or "null" sign, the true scope of the rare disease atlas is likely much larger than previously anticipated.


Subject(s)
Databases, Genetic , Genetic Diseases, Inborn/genetics , Rare Diseases/genetics , Rare Diseases/physiopathology , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL