Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nature ; 584(7822): 579-583, 2020 08.
Article in English | MEDLINE | ID: mdl-32760001

ABSTRACT

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Subject(s)
Biodiversity , Classification/methods , Islands , Plants/classification , Geographic Mapping , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Internet , New Guinea , Species Specificity , Time Factors
2.
J Plant Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918283

ABSTRACT

The fern independent gametophytes that can maintain populations by vegetative reproduction without conspecific sporophytes have been considered an unusual phenomenon found in some epiphytic or epilithic species of Hymenophyllaceae, Pteridaceae, Lomariopsidaceae, and Polypodiaceae. By chance, the discovery of mysterious strap-like gametophytes on Izu-Oshima Island, Japan, has led to the hypothesis that Hymenasplenium murakami-hatanakae, a fern species belonging to Aspleniaceae, can also form independent gametophytes. Our investigation revealed gametophyte populations of H. murakami-hatanakae on three islands in the Izu Islands. Based on chloroplast DNA analysis of the gametophyte and sporophyte populations, the gametophytes were found to be maintained by vegetative reproduction without a new supply of spores from sporophytes. A comparison of the surrounding vegetation at the collection sites showed that environmental factors such as light and humidity may influence the maintenance of gametophyte populations. These results clearly show that H. murakami-hatanakae is one of the ferns capable of forming independent gametophytes. This is the first report of independent gametophytes from the suborder Aspleniineae (eupolypod II). The discovery of the independent gametophyte within a phylogenetic lineage previously thought not to form independent gametophytes will provide important insights into the morphological and functional evolution of gametophytes in ferns.

3.
Ann Bot ; 131(1): 59-70, 2023 02 07.
Article in English | MEDLINE | ID: mdl-34259813

ABSTRACT

BACKGROUND AND AIMS: The dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number. METHODS: We conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation. KEY RESULTS: The measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution. CONCLUSIONS: Our results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.


Subject(s)
Ferns , Phylogeny , Ferns/genetics , Genome Size , Genomics , DNA
4.
BMC Plant Biol ; 22(1): 511, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36319964

ABSTRACT

BACKGROUND: Polypodiales suborder Dennstaedtiineae contain a single family Dennstaedtiaceae, eleven genera, and about 270 species, and include some groups that were previously placed in Dennstaedtiaceae, Hypolepidaceae, Monachosoraceae, and Pteridaceae. The classification and phylogenetic relationships among these eleven genera have been poorly understood. To explore the deep relationships within suborder Dennstaedtiineae and estimate the early diversification of this morphologically heterogeneous group, we analyzed complete plastomes of 57 samples representing all eleven genera of suborder Dennstaedtiineae using maximum likelihood and Bayesian inference. RESULTS: The phylogenetic relationships of all the lineages in the bracken fern family Dennstaedtiaceae were well resolved with strong support values. All six genera of Hypolepidoideae were recovered as forming a monophyletic group with full support, and Pteridium was fully supported as sister to all the other genera in Hypolepidoideae. Dennstaedtioideae (Dennstaedtia s.l.) fell into four clades with full support: the Microlepia clade, the northern Dennstaedtia clade, the Dennstaedtia globulifera clade, and the Dennstaedtia s.s. clade. Monachosorum was strongly resolved as sister to all the remaining genera of suborder Dennstaedtiineae. Based on the well resolved relationships among genera, the divergence between Monachosorum and other groups of suborder Dennstaedtiineae was estimated to have occurred in the Early Cretaceous, and all extant genera (and clades) in Dennstaedtiineae, were inferred to have diversified since the Late Oligocene. CONCLUSION: This study supports reinstating a previously published family Monachosoraceae as a segregate from Dennstaedtiaceae, based on unique morphological evidence, the shady habitat, and the deep evolutionary divergence from its closest relatives.


Subject(s)
Phylogeny , Bayes Theorem , Ferns/classification , Ferns/genetics , Species Specificity
5.
Am J Bot ; 109(5): 727-745, 2022 05.
Article in English | MEDLINE | ID: mdl-35435239

ABSTRACT

PREMISE: Biodiversity is often only measured with species richness; however, this metric ignores evolutionary history and is not sufficient for making conservation decisions. Here, we characterize multiple facets and drivers of biodiversity to understand how these relate to bioregions and conservation status in the ferns of Japan. METHODS: We compiled a community data set of 1239 grid cells (20 × 20 km each) including 672 taxa based on >300,000 specimen records. We combined the community data with a phylogeny and functional traits to analyze taxonomic, phylogenetic, and functional diversity and modeled biodiversity metrics in response to environmental factors and reproductive mode. Hierarchical clustering was used to delimit bioregions. Conservation status and threats were assessed by comparing the overlap of significantly diverse grid cells with conservation zones and range maps of native Japanese deer. RESULTS: Taxonomic richness was highest at mid-latitudes. Phylogenetic and functional diversity and phylogenetic endemism were highest in small southern islands. Relative phylogenetic and functional diversity were high at high and low latitudes, and low at mid-latitudes. Grid cells were grouped into three (phylogenetic) or four (taxonomic) major bioregions. Temperature and apomixis were identified as drivers of biodiversity patterns. Conservation status was generally high for grid cells with significantly high biodiversity, but the threat due to herbivory by deer was greater for taxonomic richness than other metrics. CONCLUSIONS: Our integrative approach reveals previously undetected patterns and drivers of biodiversity in the ferns of Japan. Future conservation efforts should recognize that threats can vary by biodiversity metric and consider multiple metrics when establishing conservation priorities.


Subject(s)
Deer , Ferns , Animals , Biodiversity , Conservation of Natural Resources , Japan , Phylogeny
6.
Am J Bot ; 109(9): 1456-1471, 2022 09.
Article in English | MEDLINE | ID: mdl-35938973

ABSTRACT

PREMISE: The successful establishment of polyploid species is hypothesized to be promoted by niche differentiation from the parental species or by range shifts during climate oscillations. However, few studies have considered both of these factors simultaneously. We resolved the origin of a tetraploid fern, Lepisorus yamaokae, and explored a pattern of niche differentiation among the allotetraploid and parental species in past and current climates. METHODS: We reconstructed phylogenetic trees based on plastid marker and single-copy nuclear genes to resolve the allopolyploid origin of L. yamaokae. We also evaluated climatic niche differentiation among L. yamaokae and its two parental species using species distribution models in geographic space and principal component analysis. RESULTS: We infer that L. yamaokae had a single allotetraploid origin from L. annuifrons and L. uchiyamae. Climatic niche analyses show that the parental species currently occupy different niche spaces. The predicted distribution of the parental species at the Last Glacial Maximum (LGM) suggests more opportunities for hybridization during the LGM or during other recent temporary range shifts. Lepisorus yamaokae has a narrower niche than the additive niche of the parental species. We also observed niche conservatism in L. yamaokae. CONCLUSIONS: Range shifts of the parental species during climatic oscillations in the Quaternary likely facilitated the formation and establishment of L. yamaokae. Further, the genetic intermediacy of L. yamaokae may have enabled a niche shift in its microenvironment, resulting in its successful establishment without a macroclimatic niche shift in L. yamaokae.


Subject(s)
Ferns , Polypodiaceae , Ecosystem , Ferns/genetics , Hybridization, Genetic , Phylogeny , Polyploidy , Polypodiaceae/genetics
7.
Cladistics ; 36(2): 164-183, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34618958

ABSTRACT

The thelypteroid fern genus Stegnogramma s.l. contains around 18-35 species and has a global, cross-continental distribution ranging from tropical to temperate regions. Several genera and infrageneric sections have been recognized previously in Stegnogramma s.l., but their phylogenetic relationships are still unclear. In this study, we present a global phylogeny of Stegnogramma s.l. with the most comprehensive sampling to date and aim to pinpoint the phylogenetic positions of biogeographically and taxonomically important taxa. Based on the reconstructed historical biogeography and character evolution, we propose a new (infra)generic classification and discuss the diversification of Stegnogramma s.l. in a biogeographical context. New names or combinations are made for 12 (infra)species, including transferring the monotypic species of Craspedosorus to Leptogramma. Finally, we discuss a possible link between leaf architecture and ecological adaptation, and hypothesize that the increase in leaf dissection and free-vein proportion is an adaptive feature to cool climates in Stegnogramma s.l.

8.
J Plant Res ; 133(1): 133-141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31760570

ABSTRACT

Protocols for DNA extraction from plants generally involve physical and chemical destruction of tissues. Use of these conventional methods precludes preservation of morphological information from herbarium specimens, especially for small plants with few leaves, and reduces the voucher value of specimens. Here, we developed a new, non-destructive DNA extraction protocol (Protocol 1) that only needs a small piece of leaf (< 25 mm2) to obtain DNA suitable for DNA sequencing from fragile herbarium specimens. The protocol was very simple and rapid; an extraction buffer was placed on the leaf surface of an intact specimen for 30 min at room temperature (20 °C). The quality of extracted DNA was checked by PCR amplification of two standard plant DNA barcode regions, the maturase K gene (matK, ca. 850 bp) and the ribulose-1,5-bisphosphatecarboxylase/oxygenase gene (rbcL, ca. 550 bp), for 14 vascular plant species encompassing various taxonomic groups. The protocol retrieved sequences from 80.0% of specimens for matK and 46.2% of specimens for rbcL. Placing of the extraction buffer onto specimens did not cause any tears or deformation, but caused discoloration in some plants. To improve DNA yield for specimens incompatible with Protocol 1, we developed an alternative protocol for DNA extraction with minimally invasive destruction of specimens (Protocol 2). In this protocol, a cut leaf was immersed in the extraction buffer for 30 min and stored subsequently in a fragment pocket on the specimen sheet. This alternative method retrieved matK sequences from 80.0% of specimens and rbcL sequences from 92.8% of specimens. The combination of Protocols 1 and 2 enabled us to obtain matK sequences from 90.0% of specimens and rbcL sequences form 92.8% of specimens. The new protocols facilitate the use of museum specimens for use of DNA of museum specimens while still preserving morphological information.


Subject(s)
Plant Leaves , Plants , DNA Barcoding, Taxonomic , DNA, Plant , Polymerase Chain Reaction , Sequence Analysis, DNA
9.
Mol Phylogenet Evol ; 133: 214-235, 2019 04.
Article in English | MEDLINE | ID: mdl-30550964

ABSTRACT

Arachniodes (Dryopteridaceae) is one of the most confusing and controversial fern genera in terms of its circumscription, nomenclature, and taxonomy. Estimates of species number range from 40 to 200. Previous molecular works included only 2-17 accessions representing 2-12 species of Arachniodes and allied genera, leaving most of the Asian species remain unsampled and the infragneric relationships unclear. In this study DNA sequences of seven plastid markers of 343 accessions representing ca. 68 species of Arachniodes (275 accessions), and 64 outgroup accessions from subfam. Dryopteridoideae and subfam. Polybotryoideae were used to infer a phylogeny with maximum likelihood, Bayesian inference, and maximum parsimony approaches. Our major results include: (1) Two species currently assigned in Arachniodes (A. macrostegia and A. ochropteroides are resolved outside of the core Arachniodes making the currently defined Arachniodes polyphyletic, confirming earlier findings; (2) Lithostegia, Leptorumohra, and Phanerophlebiopsis are indeed synonyms of Arachniodes; (3) Leptorumohra is confirmed to be monophyletic, but Phanerophlebiopsis is polyphyletic; (4) The New World species of Arachniodes are confirmed to be not monophyletic with A. denticulata being nested within the Old World species, suggesting that this species is dispersed from the Old World; (5) Arachniodes s.s is resolved into 12 major clades, some of which are further divisable into recognizable subclades and groups, with A. mutica from Japan being resolved as the sister to the rest of the genus; (6) A number of systematic implications of the phylogeny have been suggested; and (7) the genus is estimated to contain ca. 83 species.


Subject(s)
Dryopteridaceae/classification , Phylogeny , Plastids/genetics , Bayes Theorem , Dryopteridaceae/anatomy & histology , Dryopteridaceae/genetics , Likelihood Functions , Rhizome/anatomy & histology , Sequence Analysis, DNA , Species Specificity
10.
J Plant Res ; 132(6): 723-738, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31529289

ABSTRACT

The fern and lycophyte flora of Japan comprising 721 native taxa (including subspecies and varieties) plus 371 interspecific hybrids was reassessed using a nearly comprehensively sampled distribution map at 10 km resolution vouchered by 216,687 specimens, up-to-date cytotaxonomic information covering 74% of the taxa, and an rbcL sequence dataset covering 97.9% of the taxa. Spatial distribution of species richness and phylogenetic diversity was visualized. Apomixis was observed in 11.0% of the native taxa whose reproductive modes are known. The number of sexually reproducing polyploid taxa (n = 199) is less than sexual diploids (n = 241), and 30 of them are evidently allopolyploid, in contrast with the low number of possible autopolyploids (n = 4). Apomictic taxa were found to have smaller latitudinal ranges than sexual taxa or taxa with multiple reproductive modes. A morphological character dataset in Lucid format is provided for taxonomic identification of the native taxa.


Subject(s)
Ferns/physiology , Lycopodiaceae/physiology , Selaginellaceae/physiology , Biodiversity , DNA, Plant , Evolution, Molecular , Ferns/classification , Ferns/genetics , Japan , Lycopodiaceae/classification , Lycopodiaceae/genetics , Selaginellaceae/classification , Selaginellaceae/genetics
11.
J Plant Res ; 132(6): 739, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31625127

ABSTRACT

In the original publication of this article, the affiliation of one of the authors was listed incorrectly as "Smithsonian Institute".

12.
J Plant Res ; 132(6): 719-721, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31595362

ABSTRACT

The past quarter-century has witnessed a revolution in our understanding of the phylogenetics, systematics, and ecology of pteridophytes (ferns and lycophytes), particularly due to the rapid accumulation of plastid sequence data and a renewed interest in the ecology of the sexual phase of the life cycle. We here compile 19 papers recently published in the Journal of Plant Research dealing with the biology of pteridophytes, grouped into six categories: (1) breeding systems, (2) species complexes and polyploidization, (3) fossil taxa, (4) gametophyte ecology, (5) systematics, (6) biodiversity. We hope this collection of papers will be of value to researchers interested in this fascinating group of plants.


Subject(s)
Biological Evolution , Ferns/physiology , Life History Traits , Lycopodiaceae/physiology , Selaginellaceae/physiology , Evolution, Molecular , Ferns/classification , Ferns/genetics , Lycopodiaceae/classification , Lycopodiaceae/genetics , Selaginellaceae/classification , Selaginellaceae/genetics
13.
J Plant Res ; 132(5): 581-588, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31292767

ABSTRACT

Mycorrhizal symbiosis between plants and fungi is ubiquitous, and has been played key roles in plant terrestrialization and diversification. Although arbuscular mycorrhizal (AM) symbioses with Glomeromycotina fungi have long been recognized as both ancient and widespread symbionts, recent studies showed that Mucoromycotina fungi were also ancestral symbionts and would thus be expected to co-exist with many land plants. To explore whether Mucoromycotina colonize fern gametophytes, we subjected fungal associations with gametophytes of two distantly related ferns, Angiopteris lygodiifolia (Marattiales) and Osmunda japonica (Osmundales), to molecular analysis. Direct PCR amplification from intracellular hyphal coils was also performed. We detected Mucoromycotina sequences in the gametophytes of A. lygodiifolia and O. japonica at rates of 41% (7/17) and 50% (49/98) of gametophytes, respectively, and assigned them to 10 operational taxonomic units of Endogonales lineages. In addition, we used AM fungal-specific primers and detected Glomeromycotina sequences in all individuals examined. The results suggest that Glomeromycotina and Mucoromycotina colonized fern gametophytes simultaneously. We found that Mucoromycotina were present in fern gametophytes of Marratiales and Osmundales, which implies that a variety of fern taxa have Mucoromycotina associations.


Subject(s)
Ferns/microbiology , Fungi/physiology , Germ Cells, Plant/microbiology , Symbiosis , DNA, Fungal/analysis , Fungi/classification , Phylogeny , RNA, Ribosomal, 18S/analysis , Species Specificity
14.
Mol Phylogenet Evol ; 119: 25-36, 2018 02.
Article in English | MEDLINE | ID: mdl-29111475

ABSTRACT

The lady fern genus Athyrium represents one of the most diversified lineages in Athyriaceae with about 160-220 known species, and is notorious for its taxonomic difficulty. Despite progress in recent phylogenetic studies involving this genus, it still lacks a modern systematic and taxonomic update using integrative analyses of molecular and morphological evidence based on a broad species sampling. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total-evidence approach, covering all formerly accepted segregates within the athyrioid ferns. We sampled up to eight plastid markers and 20 morphological characters for each species. Our analyses, including maximum parsimony, maximum likelihood and Bayesian inference, yield a robust phylogenetic framework. We find that Athyrium is not monophyletic by recovering Athyrium skinneri and A. alpestre nested with Anisocampium and Cornopteris respectively while Pseudocystopteris is included in Athyrium. Furthermore, eight well-resolved clades and two isolated species within Athyrium are found in the phylogenetic topology, which can be also characterized by morphological synapomorphies from traits of petioles, leaves, sori and spores. In the interest of recognizing monophyletic taxa with morphological synapomorphies, we agree with the inclusion of Pseudocystopteris in Athyrium as proposed in previous studies, but treat Anisocampium and Cornopteris as separate genera. We further propose to resurrect a monotypic Pseudathyrium to accommodate A. alpestre. Based on morphological characters and molecular phylogeny, a new infrageneric classification system of Athyrium is proposed which subdivided it into ten sections, and one New-World species A. skinneri is transferred into Anisocampium.


Subject(s)
Ferns/classification , Phylogeny , Bayes Theorem , Databases, Genetic , Ferns/anatomy & histology , Sequence Analysis, DNA
15.
Cladistics ; 34(1): 78-92, 2018 Feb.
Article in English | MEDLINE | ID: mdl-34641637

ABSTRACT

Deparia, including the previously recognized genera Lunathyrium, Dryoathyrium (=Parathyrium), Athyriopsis, Triblemma, and Dictyodroma, is a fern genus comprising about 70 species in Athyriaceae. In this study, we inferred a robust Deparia phylogeny based on a comprehensive taxon sampling (~81% of species) that captures the morphological diversity displayed in the genus. All Deparia species formed a highly supported monophyletic group. Within Deparia, seven major clades were identified, and most of them were characterized by inferring synapomorphies using 14 morphological characters including leaf architecture, petiole base, rhizome type, soral characters, spore perine, and leaf indument. These results provided the morphological basis for an infra-generic taxonomic revision of Deparia.

16.
J Plant Res ; 131(4): 573-587, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29600315

ABSTRACT

The Asplenium normale D. Don complex comprises several taxa that are either diploid or tetraploid. The tetraploids are assumed to have originated from diploid ancestors by relatively recent autopolyploidization or allopolyploidization. Some of the diploids are readily recognized morphologically but most of the taxa have until now been placed into a single species. However, phylogenetic studies have challenged this treatment and emphasized the notion that the taxonomic treatment of this complex needs to be revised. An integrative taxonomic approach was employed to delimit species in the complex using cytological, morphological, and DNA sequence data. Initially, we employed a diploid first approach to establish a robust taxonomic framework. Special efforts were made to collect and identify the diploid progenitors of each polyploid lineage identified in the plastid DNA based phylogenetic hypothesis. A total of six distinct diploid species were identified. The distinctive nature of the six diploids is strongly supported by sequence differences in plastid DNA and nuclear loci, as well as by the results of morphometric analysis. Diagnostic morphological characters were identified to distinguish the six diploid species, resulting in their revised taxonomy, which includes two novel species, namely, Asplenium normaloides and A. guangdongense. Further studies to strengthen the taxonomic classification of all of the tetraploid taxa are warranted.


Subject(s)
Ferns/classification , China , DNA, Chloroplast/genetics , DNA, Plant/genetics , Diploidy , Ferns/anatomy & histology , Ferns/genetics , Phylogeny , Sequence Alignment , Tetraploidy
17.
J Plant Res ; 130(2): 255-262, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012123

ABSTRACT

Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will further illustrate the biogeographic significance of non-temperate fern gametophyte independence.


Subject(s)
DNA, Plant/genetics , Plastids/genetics , Pteridaceae/physiology , DNA, Plant/metabolism , Germ Cells, Plant/physiology , Japan , Plastids/metabolism , Pteridaceae/genetics , Sequence Analysis, DNA , Taiwan
18.
Mol Phylogenet Evol ; 104: 123-134, 2016 11.
Article in English | MEDLINE | ID: mdl-27520931

ABSTRACT

The wide geographical distribution of many fern species is related to their high dispersal ability. However, very limited studies surveyed biological traits that could contribute to colonization success after dispersal. In this study, we applied phylogenetic approaches to infer historical biogeography of the fern genus Deparia (Athyriaceae, Eupolypods II). Because polyploids are suggested to have better colonization abilities and are abundant in Deparia, we also examined whether polyploidy could be correlated to long-distance dispersal events and whether polyploidy could play a role in these dispersals/establishment and range expansion. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a four-region combined cpDNA dataset (rps16-matK IGS, trnL-L-F, matK and rbcL; a total of 4252 characters) generated from 50 ingroup (ca. 80% of the species diversity) and 13 outgroup taxa. Using the same sequence alignment and maximum likelihood trees, we carried out molecular dating analyses. The resulting chronogram was used to reconstruct ancestral distribution using the DEC model and ancestral ploidy level using ChromEvol. We found that Deparia originated around 27.7Ma in continental Asia/East Asia. A vicariant speciation might account for the disjunctive distribution of East Asia-northeast North America. There were multiple independent long-distance dispersals to Africa/Madagascar (at least once), Southeast Asia (at least once), south Pacific islands (at least twice), Australia/New Guinea/New Zealand (at least once), and the Hawaiian Islands (at least once). In particular, the long-distance dispersal to the Hawaiian Islands was associated with polyploidization, and the dispersal rate was slightly higher in the polyploids than in diploids. Moreover, we found five species showing recent infraspecific range expansions, all of which took place concurrently with polyploidization. In conclusion, our study provides the first investigation using phylogenetic and biogeographic analyses trying to explore the link between historical biogeography and ploidy evolution in a fern genus and our results imply that polyploids might be better colonizers than diploids.


Subject(s)
Ferns/classification , Africa , Asia , Australia , Bayes Theorem , Biodiversity , Cryptochromes/classification , Cryptochromes/genetics , Cryptochromes/metabolism , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , DNA, Chloroplast/metabolism , Ferns/genetics , Hawaii , North America , Phylogeny , Phylogeography , Polyploidy , Sequence Analysis, DNA
19.
Mycorrhiza ; 26(2): 87-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26047572

ABSTRACT

To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.


Subject(s)
Biota , Ferns/microbiology , Mycorrhizae/classification , Mycorrhizae/growth & development , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Microscopy , Mycorrhizae/cytology , Mycorrhizae/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
20.
Cladistics ; 31(4): 406-423, 2015 Aug.
Article in English | MEDLINE | ID: mdl-34772268

ABSTRACT

The brake fern genus Pteris belongs to the Pteridaceae subfamily Pteridoideae. It contains 200-250 species distributed on all continents except Antarctica, with its highest species diversity in tropical and subtropical regions. The monophyly of Pteris has long been in question because of its great morphological diversity and because of the controversial relationships of the Australian endemic monospecific genus Platyzoma. The circumscription of the Pteridoideae has likewise been uncertain. Previous studies typically had sparse sampling of Pteris species and related genera and used limited DNA sequence data. In the present study, DNA sequences of six plastid loci of 146 accessions representing 119 species of Pteris (including the type of the genus) and 18 related genera were used to infer a phylogeny using maximum-likelihood, Bayesian-inference and maximum-parsimony methods. Our major results include: (i) the previous uncertain relationships of Platyzoma were due to long-branch attraction; (ii) Afropteris, Neurocallis, Ochropteris and Platyzoma are all embedded within a well-supported Pteris sensu lato; (iii) the traditionally circumscribed Jamesonia is paraphyletic in relation to a monophyletic Eriosorus; (iv) Pteridoideae contains 15 genera: Actiniopteris, Anogramma, Austrogramme, Cerosora, Cosentinia, Eriosorus, Jamesonia, Nephopteris (no molecular data), Onychium, Pityrogramma, Pteris, Pterozonium, Syngramma, Taenitis and Tryonia; and (v) 15 well-supported clades within Pteris are identified, which differ from one another on molecular, morphological and geographical grounds, and represent 15 major evolutionary lineages.

SELECTION OF CITATIONS
SEARCH DETAIL