Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuropathol Appl Neurobiol ; 48(7): e12847, 2022 12.
Article in English | MEDLINE | ID: mdl-35977725

ABSTRACT

AIMS: Anaplastic ganglioglioma is a rare tumour, and diagnosis has been based on histological criteria. The 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS WHO) does not list anaplastic ganglioglioma as a distinct diagnosis due to lack of molecular data in previous publications. We retrospectively compiled a cohort of 54 histologically diagnosed anaplastic gangliogliomas to explore whether the molecular profiles of these tumours represent a separate type or resolve into other entities. METHODS: Samples were subjected to histological review, desoxyribonucleic acid (DNA) methylation profiling and next-generation sequencing. Morphological and molecular data were summarised to an integrated diagnosis. RESULTS: The majority of tumours designated as anaplastic gangliogliomas resolved into other CNS WHO diagnoses, most commonly pleomorphic xanthoastrocytoma (16/54), glioblastoma, isocitrate dehydrogenase protein (IDH) wild type and diffuse paediatric-type high-grade glioma, H3 wild type and IDH wild type (11 and 2/54), followed by low-grade glial or glioneuronal tumours including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumour and diffuse leptomeningeal glioneuronal tumour (5/54), IDH mutant astrocytoma (4/54) and others (6/54). A subset of tumours (10/54) was not assignable to a CNS WHO diagnosis, and common molecular profiles pointing to a separate entity were not evident. CONCLUSIONS: In summary, we show that tumours histologically diagnosed as anaplastic ganglioglioma comprise a wide spectrum of CNS WHO tumour types with different prognostic and therapeutic implications. We therefore suggest assigning this designation with caution and recommend comprehensive molecular workup.


Subject(s)
Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Ganglioglioma , Glioma , Child , Humans , Ganglioglioma/pathology , Retrospective Studies , Glioma/pathology , Astrocytoma/pathology , Brain Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Isocitrate Dehydrogenase
2.
Acta Neuropathol ; 139(1): 193-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31563982

ABSTRACT

The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Adult , Brain Neoplasms/pathology , Child , Child, Preschool , DNA Copy Number Variations , DNA Methylation , Female , Glioma/pathology , Humans , Male , Middle Aged , Oncogene Fusion , Young Adult
3.
Acta Neuropathol ; 138(5): 827-835, 2019 11.
Article in English | MEDLINE | ID: mdl-31278449

ABSTRACT

Molecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays. Here, we assessed the feasibility and clinical value of investigating gene fusions in formalin-fixed paraffin-embedded (FFPE) tumor tissues by next-generation mRNA sequencing in a routine diagnostic setting. After establishment and optimization of a workflow applicable in a routine setting, prospective diagnostic application in a neuropathology department for 26 months yielded relevant fusions in 66 out of 101 (65%) analyzed cases. In 43 (43%) cases, the fusions were of decisive diagnostic relevance and in 40 (40%) cases the fusion genes rendered a druggable target. A major strength of this approach was its ability to detect fusions beyond the canonical alterations for a given entity, and the unbiased search for any fusion event in cases with uncertain diagnosis and, thus, uncertain spectrum of expected fusions. This included both rare variants of established fusions which had evaded prior targeted analyses as well as the detection of previously unreported fusion events. While the impact of fusion detection on diagnostics is highly relevant, it is especially the detection of "druggable" fusions which will most likely provide direct benefit to the patients. The wider application of this approach for unbiased fusion identification therefore promises to be a major advance in identifying alterations with immediate impact on patient care.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Mutation/genetics , Sequence Analysis, RNA , Base Sequence , DNA Mutational Analysis/methods , Gene Fusion/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Neuropathology/methods , Paraffin Embedding/methods
4.
Acta Neuropathol ; 137(5): 837-846, 2019 05.
Article in English | MEDLINE | ID: mdl-30759284

ABSTRACT

Papillary glioneuronal tumor (PGNT) is a WHO-defined brain tumor entity that poses a major diagnostic challenge. Recently, SLC44A1-PRKCA fusions have been described in PGNT. We subjected 28 brain tumors from different institutions histologically diagnosed as PGNT to molecular and morphological analysis. Array-based methylation analysis revealed that 17/28 tumors exhibited methylation profiles typical for other tumor entities, mostly dysembryoplastic neuroepithelial tumor and hemispheric pilocytic astrocytoma. Conversely, 11/28 tumors exhibited a unique profile, thus constituting a distinct methylation class PGNT. By screening the extended Heidelberg cohort containing over 25,000 CNS tumors, we identified three additional tumors belonging to this methylation cluster but originally histologically diagnosed otherwise. RNA sequencing for the detection of SLC44A1-PRKCA fusions could be performed on 19 of the tumors, 10 of them belonging to the methylation class PGNT. In two additional cases, SLC44A1-PRKCA fusions were confirmed by FISH. We detected fusions involving PRKCA in all cases of this methylation class with material available for analyses: the canonical SLC44A1-PRKCA fusion was observed in 11/12 tumors, while the remaining case exhibited a NOTCH1-PRKCA fusion. Neither of the fusions was found in the tumors belonging to other methylation classes. Our results point towards a high misclassification rate of the morphological diagnosis PGNT and clearly demonstrate the necessity of molecular analyses. PRKCA fusions are highly diagnostic for PGNT, and detection by RNA sequencing enables the identification of rare fusion partners. Methylation analysis recognizes a unique methylation class PGNT irrespective of the nature of the PRKCA fusion.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Adolescent , Adult , Antigens, CD/genetics , Antigens, CD/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/pathology , Child , Cohort Studies , Female , Gene Fusion , Humans , Male , Middle Aged , Neoplasms, Neuroepithelial/pathology , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)
6.
Acta Neuropathol ; 136(5): 793-803, 2018 11.
Article in English | MEDLINE | ID: mdl-30187121

ABSTRACT

EGFR amplification (EGFRamp), the combination of gain of chromosome 7 and loss of chromosome 10 (7+/10-), and TERT promoter mutation (pTERTmut) are alterations frequently observed in adult IDH-wild-type (IDHwt) glioblastoma (GBM). In the absence of endothelial proliferation and/or necrosis, these alterations currently are considered to serve as a surrogate for upgrading IDHwt diffuse or anaplastic astrocytoma to GBM. Here, we set out to determine the distribution of EGFRamp, 7+/10-, and pTERTmut by analyzing high-resolution copy-number profiles and next-generation sequencing data of primary brain tumors. In addition, we addressed the question whether combinations of partial gains on chromosome 7 and partial losses on chromosome 10 exhibited a diagnostic and prognostic value similar to that of complete 7+/10-. Several such combinations proved relevant and were combined as the 7/10 signature. Our results demonstrate that EGFRamp and the 7/10 signature are closely associated with IDHwt GBM. In contrast, pTERTmut is less specific for IDHwt GBM. We conclude that, in the absence of endothelial proliferation and/or necrosis, the detection of EGFRamp is a very strong surrogate marker for the diagnosis of GBM in IDHwt diffuse astrocytic tumors. The 7/10 signature is also a strong surrogate marker. However, care should be taken to exclude pleomorphic xanthoastrocytoma. pTERTmut is less restricted to this entity and needs companion analysis by other molecular markers to serve as a surrogate for diagnosing IDHwt GBM. A combination of any two of EGFRamp, the 7/10 signature and pTERTmut, is highly specific for IDHwt GBM and the combination of all three alterations is frequent and exclusively seen in IDHwt GBM.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 7/genetics , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Aged , Astrocytoma/pathology , Brain/metabolism , Brain/pathology , Brain Neoplasms/pathology , Cohort Studies , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Glioblastoma/pathology , Humans , Male , Middle Aged , Mutation/genetics
7.
Acta Neuropathol ; 136(2): 181-210, 2018 08.
Article in English | MEDLINE | ID: mdl-29967940

ABSTRACT

Recently, we described a machine learning approach for classification of central nervous system tumors based on the analysis of genome-wide DNA methylation patterns [6]. Here, we report on DNA methylation-based central nervous system (CNS) tumor diagnostics conducted in our institution between the years 2015 and 2018. In this period, more than 1000 tumors from the neurosurgical departments in Heidelberg and Mannheim and more than 1000 tumors referred from external institutions were subjected to DNA methylation analysis for diagnostic purposes. We describe our current approach to the integrated diagnosis of CNS tumors with a focus on constellations with conflicts between morphological and molecular genetic findings. We further describe the benefit of integrating DNA copy-number alterations into diagnostic considerations and provide a catalog of copy-number changes for individual DNA methylation classes. We also point to several pitfalls accompanying the diagnostic implementation of DNA methylation profiling and give practical suggestions for recurring diagnostic scenarios.


Subject(s)
Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Neoplasm Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Humans , Isocitrate Dehydrogenase/genetics , Male , Receptor Protein-Tyrosine Kinases/genetics , Retrospective Studies , Tumor Suppressor Proteins/genetics
8.
Acta Neuropathol ; 136(2): 293-302, 2018 08.
Article in English | MEDLINE | ID: mdl-29978331

ABSTRACT

Extraventricular neurocytoma (EVN) is a rare primary brain tumor occurring in brain parenchyma outside the ventricular system. Histopathological characteristics resemble those of central neurocytoma but exhibit a wider morphologic spectrum. Accurate diagnosis of these histologically heterogeneous tumors is often challenging because of the overlapping morphological features and the lack of defining molecular markers. Here, we explored the molecular landscape of 40 tumors diagnosed histologically as EVN by investigating copy number profiles and DNA methylation array data. DNA methylation profiles were compared with those of relevant differential diagnoses of EVN and with a broader spectrum of diverse brain tumor entities. Based on this, our tumor cohort segregated into different groups. While a large fraction (n = 22) formed a separate epigenetic group clearly distinct from established DNA methylation profiles of other entities, a subset (n = 14) of histologically diagnosed EVN grouped with clusters of other defined entities. Three cases formed a small group close to but separated from the epigenetically distinct EVN cases, and one sample clustered with non-neoplastic brain tissue. Four additional samples originally diagnosed otherwise were found to molecularly resemble EVN. Thus, our results highlight a distinct DNA methylation pattern for the majority of tumors diagnosed as EVN, but also indicate that approximately one third of morphological diagnoses of EVN epigenetically correspond to other brain tumor entities. Copy number analysis and confirmation through RNA sequencing revealed FGFR1-TACC1 fusion as a distinctive, recurrent feature within the EVN methylation group (60%), in addition to a small number of other FGFR rearrangements (13%). In conclusion, our data demonstrate a specific epigenetic signature of EVN suitable for characterization of these tumors as a molecularly distinct entity, and reveal a high frequency of potentially druggable FGFR pathway activation in this tumor group.


Subject(s)
Brain Neoplasms/genetics , Fetal Proteins/genetics , Microtubule-Associated Proteins/genetics , Neurocytoma/genetics , Nuclear Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , DNA Methylation/genetics , Female , Fetal Proteins/metabolism , Histones/genetics , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kaplan-Meier Estimate , Ki-67 Antigen/metabolism , Male , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Retrospective Studies , Transcriptome
9.
Acta Neuropathol Commun ; 12(1): 60, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637838

ABSTRACT

Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Neoplasms, Neuroepithelial , Adult , Humans , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/genetics , Neoplasms, Neuroepithelial/diagnostic imaging , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Methylation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , CREB-Binding Protein/genetics
10.
Free Neuropathol ; 42023 Jan.
Article in English | MEDLINE | ID: mdl-38026572

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) poses a diagnostic challenge. The present study relies on methylation-based predictions and focuses on copy number variations (CNV) in PXA. We identified 551 tumors from patients having received the histologic diagnosis or differential diagnosis pleomorphic xanthoastrocytoma (PXA) uploaded to the web page www.molecularneuropathology.org. Of these 551 tumors, 165 received the prediction "methylation class (anaplastic) pleomorphic xanthoastrocytoma" with a calibrated score >=0.9 by the brain tumor classifier version v12.8 and, therefore, were defined the PXA reference set designated mcPXAref. In addition to these 165 mcPXAref, 767 other tumors received the prediction mcPXA with a calibrated score >=0.9 but without a histological PXA diagnosis. The total number of individual tumors predicted by histology and/or by methylome based classification as PXA, mcPXA or both was 1318, and these were designated the study cohort. The selection of a control cohort was guided by methylation-based predictions recurrently observed for the other 386/551 tumors diagnosed as histologic PXA. 131/386 received predictions for another entity besides PXA with a score >=0.9. Control tumors corresponding to the 11 most common other predictions were selected, adding up to 1100 reference cases. CNV profiles were calculated from all methylation datasets of the study and control cohorts. Special attention was given to the 7/10 signature, gene amplifications and homozygous deletion of CDKN2A/B. Comparison of CNV in the subsets of the study cohort and the control cohort were used to establish relations independent of histological diagnoses. Tumors in mcPXA were highly homogenous in regard to CNV alterations, irrespective of the histological diagnoses. The 7/10 signature commonly present in glioblastoma, IDH-wildtype, was present in 15-20% of mcPXA, whereas amplification of oncogenes (likewise common in glioblastoma) was very rare in mcPXA (<1%). In contrast, the histology-based PXA group exhibited high variance in regard to methylation classes as well as to CNVs. Our data add to the notion, that histologically defined PXA likely only represent a subset of the biological disease.

11.
Nat Med ; 29(4): 917-926, 2023 04.
Article in English | MEDLINE | ID: mdl-36928815

ABSTRACT

The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.


Subject(s)
Brain Neoplasms , Glioma , Adolescent , Humans , Child , Multiomics , Glioma/diagnosis , Glioma/genetics , Neuropathology , DNA Methylation/genetics , Mutation , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics
12.
Acta Neuropathol Commun ; 10(1): 5, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012690

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) in its classic manifestation exhibits distinct morphological features and is assigned to CNS WHO grade 2 or grade 3. Distinction from glioblastoma variants and lower grade glial and glioneuronal tumors is a common diagnostic challenge. We compared a morphologically defined set of PXA (histPXA) with an independent set, defined by DNA methylation analysis (mcPXA). HistPXA encompassed 144 tumors all subjected to DNA methylation array analysis. Sixty-two histPXA matched to the methylation class mcPXA. These were combined with the cases that showed the mcPXA signature but had received a histopathological diagnosis other than PXA. This cohort constituted a set of 220 mcPXA. Molecular and clinical parameters were analyzed in these groups. Morphological parameters were analyzed in a subset of tumors with FFPE tissue available. HistPXA revealed considerable heterogeneity in regard to methylation classes, with methylation classes glioblastoma and ganglioglioma being the most frequent mismatches. Similarly, the mcPXA cohort contained tumors of diverse histological diagnoses, with glioblastoma constituting the most frequent mismatch. Subsequent analyses demonstrated the presence of canonical pTERT mutations to be associated with unfavorable prognosis among mcPXA. Based on these data, we consider the tumor type PXA to be histologically more varied than previously assumed. Histological approach to diagnosis will predominantly identify cases with the established archetypical morphology. DNA methylation analysis includes additional tumors in the tumor class PXA that share similar DNA methylation profile but lack the typical morphology of a PXA. DNA methylation analysis also assist in separating other tumor types with morphologic overlap to PXA. Our data suggest the presence of canonical pTERT mutations as a robust indicator for poor prognosis in methylation class PXA.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Telomerase/genetics , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , DNA Methylation , Humans , Mutation , Prognosis , Survival Rate
13.
Nat Commun ; 12(1): 498, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479225

ABSTRACT

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.


Subject(s)
Algorithms , Bone Neoplasms/genetics , DNA Methylation , Machine Learning , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Bone Neoplasms/classification , Bone Neoplasms/diagnosis , Cohort Studies , DNA Copy Number Variations/genetics , Humans , Internet , Reproducibility of Results , Sarcoma/classification , Sarcoma/diagnosis , Sensitivity and Specificity , Soft Tissue Neoplasms/classification , Soft Tissue Neoplasms/diagnosis
14.
Neurol Res ; 31(8): 785-93, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19723446

ABSTRACT

BACKGROUND: Cavernous angioma is a vascular malformation which can be found in any region within the central nervous system. OBJECTIVES: There are few clinical and demographic cavernous angioma studies with large sample sizes. Therefore, the present study was designed to provide further information on the clinical and demographic characteristics of cavernous angioma using a relatively large sample of Persian patients. METHODS: Patients with cavernous angioma were recruited from the outpatient neurology clinics in Isfahan, Iran, from October 2003 to October 2006. RESULTS: In all cases, the diagnosis of cavernous angioma was based on brain magnetic resonance imaging. There were 35 patients (female/male: 17 : 18) identified with cavernous angioma. The mean age at presentation was 28.8 years. Initial manifestations included seizures in 16, headache in 11 and intracranial hemorrhage in eight patients. During follow-up, all patients experienced seizures and 19 developed headaches. Depression, vertigo, nausea, vomiting, disequilibrium, loss of consciousness and sensorimotor symptoms were also observed. CONCLUSION: Some of the findings of the present study were in accordance with previous studies. However, more of our patients with positive family history had solitary rather than multiple lesions, and more of our patients had generalized tonic-clonic seizures rather than partial seizures. Moreover, our data demonstrated that if there is a history of cavernous angioma with intracranial hemorrhage in family members, the presenting cavernous angioma patient is more prone to intracranial hemorrhage.


Subject(s)
Hemangioma, Cavernous , Adolescent , Adult , Age of Onset , Aged , Brain/pathology , Brain/physiopathology , Child , Electroencephalography , Family , Female , Headache/epidemiology , Headache/pathology , Headache/physiopathology , Hemangioma, Cavernous/epidemiology , Hemangioma, Cavernous/pathology , Hemangioma, Cavernous/physiopathology , Humans , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/pathology , Intracranial Hemorrhages/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Seizures/epidemiology , Seizures/pathology , Seizures/physiopathology , Young Adult
15.
J Cancer Res Clin Oncol ; 145(4): 839-850, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30610375

ABSTRACT

PURPOSE: Diffuse midline gliomas, H3 K27M-mutant were introduced as a new grade IV entity in WHO classification of tumors 2016. These tumors occur often in pediatric patients and show an adverse prognosis with a median survival less than a year. Most of the studies on these tumors, previously known as pediatric diffuse intrinsic pontine glioma, are on pediatric patients and its significance in adult patients is likely underestimated. METHODS: We studied 165 cases of brain tumors of midline localization initially diagnosed as diffuse astrocytomas, oligodendrogliomas, pilocytic astrocytomas, supependymomas, ependymomas and medulloblastomas in patients with an age range of 2-85. RESULTS: We identified 41 diffuse midline gliomas according WHO 2016, including 12 pediatric and 29 adult cases, among them two cases with histological features of low grade tumors: pilocytic astrocytoma and subependymoma. 49% (20/41) of the patients were above 30 years old by the first tumor manifestation including 29% (11/41) above 54 that signifies a broader age spectrum as previously reported. Our study confirms that H3 K27M mutations are associated with a poorer prognosis in pediatric patients compared to wild-type tumors, while in adult patients these mutations do not influence the survival significantly. The pattern of tumor growth was different in pediatric compared to adult patients; a diffuse growth along the brain axis was more evident in adult compared to pediatric patients (24% vs. 15%). CONCLUSION: H3 K27M mutations are frequent in adult midline gliomas and have a prognostic role similar to H3 K27M wild-type high-grade tumors.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Mutation , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brain Neoplasms/pathology , Child , Child, Preschool , DNA Methylation , Female , Glioma/pathology , Histones/genetics , Humans , Male , Middle Aged , Neoplasm Grading , Young Adult
17.
Acta Neuropathol Commun ; 7(1): 163, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31661039

ABSTRACT

In this multi-institutional study we compiled a retrospective cohort of 86 posterior fossa tumors having received the diagnosis of cerebellar glioblastoma (cGBM). All tumors were reviewed histologically and subjected to array-based methylation analysis followed by algorithm-based classification into distinct methylation classes (MCs). The single MC containing the largest proportion of 25 tumors diagnosed as cGBM was MC anaplastic astrocytoma with piloid features representing a recently-described molecular tumor entity not yet included in the WHO Classification of Tumours of the Central Nervous System (WHO classification). Twenty-nine tumors molecularly corresponded to either of 6 methylation subclasses subsumed in the MC family GBM IDH wildtype. Further we identified 6 tumors belonging to the MC diffuse midline glioma H3 K27 M mutant and 6 tumors allotted to the MC IDH mutant glioma subclass astrocytoma. Two tumors were classified as MC pilocytic astrocytoma of the posterior fossa, one as MC CNS high grade neuroepithelial tumor with BCOR alteration and one as MC control tissue, inflammatory tumor microenvironment. The methylation profiles of 16 tumors could not clearly be assigned to one distinct MC. In comparison to supratentorial localization, the MC GBM IDH wildtype subclass midline was overrepresented, whereas the MCs GBM IDH wildtype subclass mesenchymal and subclass RTK II were underrepresented in the cerebellum. Based on the integration of molecular and histological findings all tumors received an integrated diagnosis in line with the WHO classification 2016. In conclusion, cGBM does not represent a molecularly uniform tumor entity, but rather comprises different brain tumor entities with diverse prognosis and therapeutic options. Distinction of these molecular tumor classes requires molecular analysis. More than 30% of tumors diagnosed as cGBM belong to the recently described molecular entity of anaplastic astrocytoma with piloid features.


Subject(s)
Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/metabolism , Glioblastoma/diagnosis , Glioblastoma/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p16/metabolism , ErbB Receptors/metabolism , Female , Glioblastoma/pathology , Humans , Infant , Infant, Newborn , Infratentorial Neoplasms/diagnosis , Infratentorial Neoplasms/metabolism , Infratentorial Neoplasms/pathology , Male , Methylation , Middle Aged , Retrospective Studies , Telomerase/metabolism , Young Adult
18.
Arch Iran Med ; 11(6): 649-53, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18976036

ABSTRACT

BACKGROUND: Television as an external stimulation can precipitate epileptic seizures. Today this kind of epilepsy is known as television epilepsy. As children spend much of their time watching television, it is important to study this type of epilepsy in this age group. This study was designed to describe the clinical and some demographic characteristics of television epilepsy in Iranian children. METHODS: Patients who were diagnosed as having television epilepsy with an age less than 12 years were recruited from outpatient neurology clinics in Isfahan, Iran, from September 2002 through September 2006. We collected the case-related information including electroencephalograms, radiologic findings, and patients' history. RESULTS: Thirty patients with television epilepsy with the age less than 12 years were identified. Of whom 17 (56.7%) were females and 13 (43.3%) were males. The mean age at the onset of seizure was 9.9+/-2.1 years. Children had absence (3.3%), myoclonic (3.3%), and generalized tonic-clonic (93.3+/-) seizures in response to intermittent photic stimulations. Interictal epileptiform discharges in electroencephalograms were detected in 83.3%. In addition, neuroimaging findings were normal in 96.7% of the patients. In our study, 56.7% of the children had pure television epilepsy and 43.3% experienced other types of generalized seizure. During the follow-up period after initiation of variable drug treatments including valproic acid, carbamazepine, phenobarbital, clonazepam, ethosuximide, and lamotrigine all the patients had complete seizure remission. CONCLUSION: The clinical and demographic differences of our patients compared with other reports are probably due to genetic differences. In our study, it was demonstrated that carbamazepine could be used in children with television epilepsy because it had successfully terminated seizures in 43.3% of the patients.


Subject(s)
Epilepsy, Reflex/drug therapy , Epilepsy, Reflex/etiology , Photic Stimulation/adverse effects , Photic Stimulation/instrumentation , Television , Anticonvulsants/therapeutic use , Carbamazepine/therapeutic use , Child , Electroencephalography , Epilepsy, Reflex/diagnosis , Female , Follow-Up Studies , Health Surveys , Humans , Iran , Male , Treatment Outcome , Valproic Acid/therapeutic use
19.
Endocr Pathol ; 28(4): 315-319, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28102527

ABSTRACT

The case report describes a teratoma of the sellar region with a gland forming and an immature, relatively clear undifferentiated component without signs of anaplasia. Both components express TTF-1 indicating their presumable origin in the neurohypophysis as part of the circumventricular organs. The differential diagnosis includes pituitary adenoma and spindle cell oncocytoma with inclusion of Rathke's cleft cyst, pituitary blastoma, yolk sac tumor, and other germ cell tumors. The prognosis is the same as in the immature teratomas in the gonads, specifically unclear.


Subject(s)
Brain Neoplasms/pathology , Pituitary Gland/pathology , Teratoma/pathology , Adult , Brain Neoplasms/surgery , Humans , Male , Pituitary Gland/surgery , Teratoma/surgery
SELECTION OF CITATIONS
SEARCH DETAIL