Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Publication year range
2.
PLoS Pathog ; 13(5): e1006348, 2017 May.
Article in English | MEDLINE | ID: mdl-28475648

ABSTRACT

APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.


Subject(s)
Aminohydrolases/genetics , Cytosine Deaminase/genetics , HIV Infections/virology , HIV-1/physiology , vif Gene Products, Human Immunodeficiency Virus/genetics , APOBEC Deaminases , Aminohydrolases/metabolism , Animals , Cytidine Deaminase , Cytosine Deaminase/metabolism , Disease Models, Animal , HEK293 Cells , HIV Infections/transmission , HIV-1/genetics , Humans , Mice , Mice, Knockout , Models, Genetic , Mutation , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , Sequence Analysis, RNA , Virus Replication
3.
Mol Biol Evol ; 33(12): 3205-3212, 2016 12.
Article in English | MEDLINE | ID: mdl-27682824

ABSTRACT

The dinucleotide CpG is highly underrepresented in the genome of human immunodeficiency virus type 1 (HIV-1). To identify the source of CpG depletion in the HIV-1 genome, we investigated two biological mechanisms: (1) CpG methylation-induced transcriptional silencing and (2) CpG recognition by Toll-like receptors (TLRs). We hypothesized that HIV-1 has been under selective evolutionary pressure by these mechanisms leading to the reduction of CpG in its genome. A CpG depleted genome would enable HIV-1 to avoid methylation-induced transcriptional silencing and/or to avoid recognition by TLRs that identify foreign CpG sequences. We investigated these two hypotheses by determining the sequence context dependency of CpG depletion and comparing it with that of CpG methylation and TLR recognition. We found that in both human and HIV-1 genomes the CpG motifs flanked by T/A were depleted most and those flanked by C/G were depleted least. Similarly, our analyses of human methylome data revealed that the CpG motifs flanked by T/A were methylated most and those flanked by C/G were methylated least. Given that a similar CpG depletion pattern was observed for the human genome within which CpGs are not likely to be recognized by TLRs, we argue that the main source of CpG depletion in HIV-1 is likely host-induced methylation. Analyses of CpG motifs in over 100 viruses revealed that this unique CpG representation pattern is specific to the human and simian immunodeficiency viruses.


Subject(s)
CpG Islands , HIV-1/genetics , Repressor Proteins/genetics , Base Sequence , Biological Evolution , DNA Methylation , Databases, Nucleic Acid , Dinucleoside Phosphates/genetics , Genome, Human , Humans , Models, Statistical , Repressor Proteins/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
4.
J Virol ; 88(24): 14310-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25275134

ABSTRACT

UNLABELLED: The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE: Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Mutation, Missense , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Epitopes, T-Lymphocyte/genetics , Haplotypes , Histocompatibility Antigens Class I/genetics , Immune Evasion , Macaca nemestrina , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics
5.
Rapid Commun Mass Spectrom ; 29(1): 91-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462368

ABSTRACT

RATIONALE: Mass spectrometric identification of compounds in chromatography can be obtained from molecular masses from soft ionization mass spectrometry techniques such as field ionization (FI) and fragmentation patterns from hard ionization techniques such as electron ionization (EI). Simultaneous detection by EI and FI mass spectrometry allows alignment of the different information from each method. METHODS: We report the construction and characteristics of a combined instrument consisting of a gas chromatograph and two parallel mass spectrometry ionization sources, EI and FI. When considering both ion yield and signal-to-noise it was postulated that good-quality EI and FI mass spectra could be obtained simultaneously using a post-column splitter with a split fraction of 1:10 for EI/FI. This has been realised and we report its application for the analysis of several complex mixtures. RESULTS: The differences between the full width at half maximum (FWHM) of the EI and FI chromatograms were statistically insignificant, and the retention times of the chromatograms were highly correlated (r(2) =0.9999) with no detectable bias. The applicability and significance of this combined instrument and the attendant methodology are illustrated by the analysis of standard samples of 13 compounds with diverse structures, and the analysis of mixtures of fatty acids, fish oil, hydrocarbons and yeast metabolites. CONCLUSIONS: This combined dual-source instrument saves time and resources, and more importantly generates equivalent chromatograms aligned in time, in EI and FI (i.e. peaks with similar shapes and identical positions). The identical FWHMs and retention times of the EI and FI chromatograms in this combined instrument enable the accurate assignment of fragment ions from EI to their corresponding molecular ions in FI.

6.
J Biomed Inform ; 58: 220-225, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26494601

ABSTRACT

The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.


Subject(s)
Mutation , Sequence Alignment , Viruses/genetics , Humans
7.
J Virol ; 87(14): 8195-204, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23698293

ABSTRACT

Almost half of the human genome is composed of transposable elements. The genomic structures and life cycles of some of these elements suggest they are a result of waves of retroviral infection and transposition over millions of years. The reduction of retrotransposition activity in primates compared to that in nonprimates, such as mice, has been attributed to the positive selection of several antiretroviral factors, such as apolipoprotein B mRNA editing enzymes. Among these, APOBEC3G is known to mutate G to A within the context of GG in the genome of endogenous as well as several exogenous retroelements (the underlining marks the G that is mutated). On the other hand, APOBEC3F and to a lesser extent other APOBEC3 members induce G-to-A changes within the nucleotide GA. It is known that these enzymes can induce deleterious mutations in the genome of retroviral sequences, but the evolution and/or inactivation of retroelements as a result of mutation by these proteins is not clear. Here, we analyze the mutation signatures of these proteins on large populations of long interspersed nuclear element (LINE), short interspersed nuclear element (SINE), and endogenous retrovirus (ERV) families in the human genome to infer possible evolutionary pressure and/or hypermutation events. Sequence context dependency of mutation by APOBEC3 allows investigation of the changes in the genome of retroelements by inspecting the depletion of G and enrichment of A within the APOBEC3 target and product motifs, respectively. Analysis of approximately 22,000 LINE-1 (L1), 24,000 SINE Alu, and 3,000 ERV sequences showed a footprint of GG→AG mutation by APOBEC3G and GA→AA mutation by other members of the APOBEC3 family (e.g., APOBEC3F) on the genome of ERV-K and ERV-1 elements but not on those of ERV-L, LINE, or SINE.


Subject(s)
Cytosine Deaminase/genetics , Evolution, Molecular , Genome, Human/genetics , Protein Footprinting/methods , Retroelements/genetics , APOBEC Deaminases , Computational Biology , Cytidine Deaminase , Humans , Markov Chains , Models, Genetic , Mutation/genetics
8.
Inorg Chem ; 53(3): 1278-87, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24432726

ABSTRACT

We report a systematic study of the effects of types and positions of amino acid residues of tripeptides on the formation constants logß, acid dissociation constants pKa, and the copper coordination modes of the copper(II) complexes with 27 tripeptides formed from the amino acids glutamic acid, glycine, and histidine. logß values were calculated from pH titrations with l mmol L(-1):1 mmol L(-1) solutions of the metal and ligand and previously reported ligand pKa values. Generalized multiplicative analysis of variance (GEMANOVA) was used to model the logß values of the saturated, most protonated, monoprotonated, logß(CuL) - logß(HL), and pKa of the amide group. The resulting model of the saturated copper species has a two-term model describing an interaction between the central and the C-terminal residues plus a smaller, main effect of the N-terminal residue. The model supports the conclusion that two copper coordination modes exist depending on the absence or presence of His at the central position, giving species in which copper is coordinated via two or three fused chelate rings, respectively. The GEMANOVA model for pKamide, which is the same as that for the saturated complex, showed that Gly-Gly-His has the lowest pKamide values among the 27 tripeptides. Visible spectroscopy indicated the formation of metal-ligand dimers for tripeptides His-His-Gly and His-His-Glu, but not for His-His-His, and the formation of multiple ligand bis compexes CuL2 and Cu(HL)2 for tripeptides (Glu/Gly)-His-(Glu/Gly) and His-(Glu/Gly)-(Glu/Gly), respectively.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Glutamic Acid/chemistry , Glycine/chemistry , Histidine/chemistry , Oligopeptides/chemistry , Analysis of Variance , Models, Molecular , Potentiometry
9.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559028

ABSTRACT

APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.

10.
Retrovirology ; 9: 113, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23256516

ABSTRACT

BACKGROUND: The human immune proteins APOBEC3G and APOBEC3F (hA3G and hA3F) induce destructive G-to-A changes in the HIV genome, referred to as 'hypermutation'. These two proteins co-express in human cells, co-localize to mRNA processing bodies and might co-package into HIV virions. Therefore they are expected to also co-mutate the HIV genome. Here we investigate the mutational footprints of hA3G and hA3F in a large population of full genome HIV-1 sequences from naturally infected patients to uniquely identify sequences hypermutated by either or both of these proteins. We develop a method of identification based on the representation of hA3G and hA3F target and product motifs that does not require an alignment to a parental/consensus sequence. RESULTS: Out of nearly 100 hypermutated HIV-1 sequences only one sequence from the HIV-1 outlier group showed clear signatures of co-mutation by both proteins. The remaining sequences were affected by either hA3G or hA3F. CONCLUSION: Using a novel method of identification of HIV sequences hypermutated by the hA3G and hA3F enzymes, we report a very low rate of co-mutation of full-length HIV sequences, and discuss the potential mechanisms underlying this.


Subject(s)
Cytidine Deaminase/genetics , Cytosine Deaminase/genetics , Genome, Viral , HIV-1/genetics , Mutation , APOBEC-3G Deaminase , Humans , Nucleotide Motifs
11.
J Virol ; 85(17): 9139-46, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21697498

ABSTRACT

It is known that the human immune proteins APOBEC3G and -F (hA3G/F) can inhibit Vif-deficient HIV by G-to-A mutation; however, the roles of these enzymes in the evolution of HIV are debated. We argue that if evolutionary pressure from hA3G/F exists there should be evidence of their imprint on the HIV genome in the form of (i) underrepresentation of hA3G/F target motifs (e.g., TGGG [targeted position is underlined]) and overrepresentation of product motifs (e.g., TAGG) and/or (ii) an increase in the ratio of nonsynonymous to synonymous (NS/S) G-to-A changes among hA3G/F target motifs and a decrease of NS/S A-to-G changes among hA3G/F product motifs. To test the first hypothesis, we studied the representation of hA3G/F target and product motifs in 1,932 complete HIV-1 genomes using Markov models. We found that the highly targeted motifs are not underrepresented and their product motifs are not overrepresented. To test the second hypothesis, we determined the NS/S G↔A changes among the hA3G/F target and product motifs in 1,540 complete sets of nine HIV-1 genes. The NS/S changes did not show an increasing/decreasing trend within the target/product motifs, but the NS/S changes within the motif AG was exceptionally low. We observed the same pattern by analyzing 740 human genes. Given that hA3G/F do not act on the human genome, this suggests a small NS/S change within AG has arisen by other mechanisms. We therefore find no evidence of an evolutionary footprint of hA3G/F. We postulate several mechanisms to explain why the HIV-1 genome does not contain the hA3G/F footprint.


Subject(s)
Cytosine Deaminase/immunology , Evolution, Molecular , Genome, Viral , HIV-1/genetics , HIV-1/immunology , RNA, Viral/genetics , APOBEC Deaminases , Computational Biology/methods , Cytidine Deaminase , HIV Infections/immunology , HIV Infections/virology , Humans , Selection, Genetic
12.
Biochem J ; 438(1): 165-75, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21639855

ABSTRACT

Current lipidomic profiling methods rely mainly on MS to identify unknown lipids within a complex sample. We describe a new approach, involving LC×MS/MS (liquid chromatography×tandem MS) analysis of sphingolipids based on both mass and hydrophobicity, and use this method to characterize the SM (sphingomyelin), ceramide and GalCer (galactosylceramide) content of hippocampus from AD (Alzheimer's disease) and control subjects. Using a mathematical relationship we exclude the influence of sphingolipid mass on retention time, and generate two-dimensional plots that facilitate accurate visualization and characterization of the different ceramide moieties within a given sphingolipid class, because related molecules align horizontally or vertically on the plots. Major brain GalCer species that differ in mass by only 0.04 Da were easily differentiated on the basis of their hydrophobicity. The importance of our method's capacity to define all of the major GalCer species in the brain samples is illustrated by the novel observation that the proportion of GalCer with hydroxylated fatty acids increased approximately 2-fold in the hippocampus of AD patients, compared with age- and gender-matched controls. This suggests activation of fatty acid hydroxylase in AD. Our method greatly improves the clarity of data obtained in a lipid profiling experiment and can be expanded to other lipid classes.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Sphingolipids/analysis , Aged , Aged, 80 and over , Brain/pathology , Case-Control Studies , Ceramides/analysis , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Male , Spectrometry, Mass, Electrospray Ionization
13.
Sci Rep ; 12(1): 2420, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165300

ABSTRACT

The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG dinucleotides, nor a link between the activity of ZAP and the low CpG abundance of the SARS-CoV-2 genome.


Subject(s)
COVID-19/genetics , Dinucleoside Phosphates/genetics , Genome, Viral/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Animals , Base Sequence , Binding Sites/genetics , COVID-19/virology , Dinucleoside Phosphates/metabolism , Evolution, Molecular , Host-Pathogen Interactions/genetics , Humans , Nucleotide Motifs/genetics , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Virus Replication/genetics
14.
Viruses ; 13(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34372572

ABSTRACT

Human APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) enzymes are capable of inhibiting a wide range of endogenous and exogenous viruses using deaminase and deaminase-independent mechanisms. These enzymes are essential components of our innate immune system, as evidenced by (a) their strong positive selection and expansion in primates, (b) the evolution of viral counter-defense mechanisms, such as proteasomal degradation mediated by HIV Vif, and (c) hypermutation and inactivation of a large number of integrated HIV-1 proviruses. Numerous APOBEC3 single nucleotide polymorphisms, haplotypes, and splice variants have been identified in humans. Several of these variants have been reported to be associated with differential antiviral immunity. This review focuses on the current knowledge in the field about these natural variations and their roles in infectious diseases.


Subject(s)
APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Virus Diseases/genetics , Cytidine Deaminase/genetics , Cytosine Deaminase/genetics , HIV-1/physiology , Hepatitis B virus/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Polymorphism, Genetic/genetics , Protein Isoforms/genetics , Virus Diseases/metabolism , Virus Replication/genetics
15.
Mutat Res Rev Mutat Res ; 787: 108375, 2021.
Article in English | MEDLINE | ID: mdl-34083033

ABSTRACT

The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans
16.
Anal Bioanal Chem ; 396(2): 765-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19949775

ABSTRACT

The probability density functions of amount ratios of compounds (total codeine/total morphine, 6-monoacetylemorphine/total morphine, papaverine/total morphine, and noscapine/total morphine) from the analysis of seized heroin, originating from known world regions (South East Asia, South West Asia, South America, Mexico) allows calculation of likelihood ratios for 'unknown' samples. Application of Bayes Theorem with a suitable prior probability, for example the frequency of a particular region in the database, leads to the probability that a particular profile comes from a given target region. Data from 2549 seizures of heroin at Australia's border illustrates the method, and results are compared with simple HS1 ratio approaches for assigning geographical origin. The method can be implemented in a spreadsheet and gives more refined intelligence of the origins of seized drugs than simple ranges.


Subject(s)
Heroin/analysis , Asia, Southeastern , Chromatography, Liquid , Mexico , South America
17.
Sci Rep ; 10(1): 1286, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992766

ABSTRACT

Analysis of cancer mutational signatures have been instrumental in identification of responsible endogenous and exogenous molecular processes in cancer. The quantitative approach used to deconvolute mutational signatures is becoming an integral part of cancer research. Therefore, development of a stand-alone tool with a user-friendly interface for analysis of cancer mutational signatures is necessary. In this manuscript we introduce CANCERSIGN, which enables users to identify 3-mer and 5-mer mutational signatures within whole genome, whole exome or pooled samples. Additionally, this tool enables users to perform clustering on tumor samples based on the proportion of mutational signatures in each sample. Using CANCERSIGN, we analysed all the whole genome somatic mutation datasets profiled by the International Cancer Genome Consortium (ICGC) and identified a number of novel signatures. By examining signatures found in exonic and non-exonic regions of the genome using WGS and comparing this to signatures found in WES data we observe that WGS can identify additional non-exonic signatures that are enriched in the non-coding regions of the genome while the deeper sequencing of WES may help identify weak signatures that are otherwise missed in shallower WGS data.


Subject(s)
Databases, Nucleic Acid , Exome , Genome, Human , Mutation , Neoplasms/genetics , Software , Animals , Humans
18.
Anal Chem ; 81(4): 1450-8, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19146461

ABSTRACT

Gas chromatography using a highly polar column combined with field ionization mass spectrometry (FI-MS) is used as a comprehensive two-dimensional (2D) separation approach to analyze mixtures of fatty acid methyl esters (FAMEs). A unique ordered pattern and classification of FAMEs is obtained in a 2D GC x FI-MS separation plot based on the number of carbons, the degree of unsaturation, and a combination of both by which the geometrical, positional, and structural isomers group together. FAMEs with different chain length but identical geometry, position, and degree of unsaturation follow linear patterns. These subclassifications (linear functions) can provide information about the geometry, position, and structure of unsaturation of an unknown FAME. Non-FAMEs and FAMEs with different functional groups are identified using the ordered separation pattern of the FAMEs in the GC x FI-MS plot and the exact mass data from the FI-MS mode. Measurement of exact mass also acts as a high-resolution separation technique to separate overlapping peaks. The method is illustrated by application to samples of fish, canola, and biodiesel oils and standard mixtures of 37 FAMEs and of alpha-linolenic acid methyl ester geometrical isomers. A great wealth of information is achieved in a single run.


Subject(s)
Complex Mixtures/chemistry , Fatty Acids/analysis , Fatty Acids/isolation & purification , Animals , Bioelectric Energy Sources , Chromatography, Gas , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids, Monounsaturated/chemistry , Fish Oils/chemistry , Isomerism , Mass Spectrometry , Rapeseed Oil , alpha-Linolenic Acid/chemistry
19.
Rapid Commun Mass Spectrom ; 23(14): 2181-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19530152

ABSTRACT

Orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) was coupled to gas chromatography (GC) to measure ion yields (ratio of ion counts to number of neutrals entering the ion source) and signal-to-noise (S/N) in the electron ionization (EI) mode (hard ionization) as well as in the soft ionization modes of chemical ionization (CI), electron capture negative ion chemical ionization (NICI) and field ionization (FI). Mass accuracies of the EI and FI modes were also investigated. Sixteen structurally diverse volatile organic compounds were chosen for this study. The oa-TOF mass analyzer is highly suited for FI MS and provided an opportunity to compare the sensitivity of this ionization method to the more conventional ionization methods. Compared to the widely used quadrupole mass filter, the oa-TOF platform offers significantly greater mass accuracy and therefore the possibility of determining the empirical formula of analytes. The findings of this study showed that, for the instrument used, EI generated the most ions with the exception of compounds able to form negative ions readily. Lower ion yields in the FI mode were generally observed but the chromatograms displayed greater S/N and in many cases gave spectra dominated by a molecular ion. Ion counts in CI are limited by the very small apertures required to maintain sufficiently high pressures in the ionization chamber. Mass accuracy for molecular and fragment ions was attainable at close to manufacturer's specifications, thus providing useful information on molecular ions and neutral losses. The data presented also suggests a potentially useful instrumental combination would result if EI and FI spectra could be collected simultaneously or in alternate scans during GC/MS.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Ions/chemistry , Mass Spectrometry/instrumentation , Electrons , Gas Chromatography-Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Organic Chemicals/chemistry
20.
Cell Rep ; 29(5): 1057-1065.e4, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665623

ABSTRACT

HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A-E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest. Here, deep mutagenesis is used to define the Vif surface required for PPP2R5 degradation and isolate a panel of separation-of-function mutants (PPP2R5 degradation-deficient and APOBEC3G degradation-proficient). Functional studies with Vif and PPP2R5 mutants were combined to demonstrate that PPP2R5 is, in fact, the target Vif degrades to induce G2 arrest. Pharmacologic and genetic approaches show that direct modulation of PP2A function or depletion of specific PPP2R5 proteins causes an indistinguishable arrest phenotype. Vif function in the cell cycle checkpoint is present in common HIV-1 subtypes worldwide and likely advantageous for viral pathogenesis.


Subject(s)
Cell Cycle Checkpoints , Protein Phosphatase 2/metabolism , Proteolysis , vif Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , G2 Phase Cell Cycle Checkpoints , High-Throughput Nucleotide Sequencing , Humans , Phosphorylation , Protein Binding , Reproducibility of Results , Static Electricity , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL