Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Stem Cells ; 39(7): 866-881, 2021 07.
Article in English | MEDLINE | ID: mdl-33621399

ABSTRACT

A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Cellular Reprogramming/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , DNA Repair/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Development ; 144(8): 1566-1577, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28289129

ABSTRACT

Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.


Subject(s)
Corpus Striatum/cytology , DNA-Binding Proteins/metabolism , Globus Pallidus/cytology , Neurons/cytology , Neurons/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Cell Count , Cell Cycle Checkpoints , Cell Death , Cell Proliferation , Cyclin E/metabolism , G1 Phase , Mice, Knockout , Motor Activity , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Phenotype , S Phase
3.
Stem Cells ; 37(4): 476-488, 2019 04.
Article in English | MEDLINE | ID: mdl-30664289

ABSTRACT

When considering the clinical applications of autologous cell replacement therapy of human induced pluripotent stem cells (iPSC)-derived cells, there is a clear need to better understand what the immune response will be before we embark on extensive clinical trials to treat or model human disease. We performed a detailed assessment comparing human fibroblast cell lines (termed F1) reprogrammed into human iPSC and subsequently differentiated back to fibroblast cells (termed F2) or other human iPSC-derived cells including neural stem cells (NSC) made from either retroviral, episomal, or synthetic mRNA cell reprogramming methods. Global proteomic analysis reveals the main differences in signal transduction and immune cell protein expression between F1 and F2 cells, implicating wild type (WT) toll like receptor protein 3 (TLR3). Furthermore, global methylome analysis identified an isoform of the human TLR3 gene that is not epigenetically reset correctly upon differentiation to F2 cells resulting in a hypomethylated transcription start site in the TLR3 isoform promoter and overexpression in most human iPSC-derived cells not seen in normal human tissue. The human TLR3 isoform in human iPSC-NSC functions to suppress NF-KB p65 signaling pathway in response to virus (Poly IC), suggesting suppressed immunity of iPSC-derived cells to viral infection. The sustained WT TLR3 and TLR3 isoform overexpression is central to understanding the altered immunogenicity of human iPSC-derived cells calling for screening of human iPSC-derived cells for TLR3 expression levels before applications. Stem Cells 2019;37:476-488.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Proteomics/methods , Toll-Like Receptor 3/metabolism , Epigenome , Humans , Immunity, Innate , Induced Pluripotent Stem Cells/immunology , Signal Transduction , Toll-Like Receptor 3/immunology
4.
Genes Dev ; 24(6): 561-73, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20231315

ABSTRACT

Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), have the unique abilities of differentiation into any cell type of the organism (pluripotency) and indefinite self-renewal. Here, we show that the Rem2 GTPase, a suppressor of the p53 pathway, is up-regulated in hESCs and, by loss- and gain-of-function studies, that it is a major player in the maintenance of hESC self-renewal and pluripotency. We show that Rem2 mediates the fibroblastic growth factor 2 (FGF2) signaling pathway to maintain proliferation of hESCs. We demonstrate that Rem2 effects are mediated by suppressing the transcriptional activity of p53 and cyclin D(1) to maintain survival of hESCs. Importantly, Rem2 does this by preventing protein degradation during DNA damage. Given that Rem2 maintains hESCs, we also show that it is as efficient as c-Myc by enhancing reprogramming of human somatic cells into iPSCs eightfold. Rem2 does this by accelerating the cell cycle and protecting from apoptosis via its effects on cyclin D(1) expression/localization and suppression of p53 transcription. We show that the effects of Rem2 on cyclin D(1) are independent of p53 function. These results define the cell cycle and apoptosis as a rate-limiting step during the reprogramming phenomena. Our studies highlight the possibility of reprogramming somatic cells by imposing hESC-specific cell cycle features for making safer iPSCs for cell therapy use.


Subject(s)
Cellular Reprogramming , Cyclin D1/metabolism , Embryonic Stem Cells/physiology , Gene Expression Regulation , Monomeric GTP-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Cell Cycle , Cell Survival , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Humans , Protein Transport/physiology
5.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329129

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls. Transcriptomic analyses identified a unique inflammatory gene expression signature in PD astrocytes compared with controls. In particular, the proinflammatory cytokine IL-6 was found to be highly expressed and released by PD astrocytes and was found to induce toxicity in DAn. Mechanistically, neuronal cell death was mediated by IL-6 receptor (IL-6R) expressed in human PD neurons, leading to downstream activation of STAT3. Blockage of IL-6R by the addition of the FDA-approved anti-IL-6R antibody, Tocilizumab, prevented PD neuronal death. SN neurons overexpressing IL-6R and reactive astrocytes expressing IL-6 were detected in postmortem brain tissue of patients at early stages of PD. Our findings highlight the potential role of astrocyte-mediated inflammatory signaling in neuronal loss in PD and pave the way for the design of future therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Astrocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Interleukin-6/metabolism , Neurodegenerative Diseases/pathology , Dopaminergic Neurons/metabolism
6.
Cells ; 12(24)2023 12 08.
Article in English | MEDLINE | ID: mdl-38132120

ABSTRACT

BACKGROUND: Proteins targeted by the ubiquitin proteasome system (UPS) are identified for degradation by the proteasome, which has been implicated in the development of neurodegenerative diseases. Major histocompatibility complex (MHC) molecules present peptides broken down by the proteasome and are involved in neuronal plasticity, regulating the synapse number and axon regeneration in the central or peripheral nervous system during development and in brain diseases. The mechanisms governing these effects are mostly unknown, but evidence from different compartments of the cerebral cortex indicates the presence of immune-like MHC receptors in the central nervous system. METHODS: We used human induced pluripotent stem cells (iPSCs) differentiated into neural stem cells and then into motor neurons as a developmental model to better understand the structure of the proteasome in developing motor neurons. We performed a proteomic analysis of starting human skin fibroblasts, their matching iPSCs, differentiated neural stem cells and motor neurons that highlighted significant differences in the constitutive proteasome and immunoproteasome subunits during development toward motor neurons from iPSCs. RESULTS: The proteomic analysis showed that the catalytic proteasome subunits expressed in fibroblasts differed from those in the neural stem cells and motor neurons. Western blot analysis confirmed the proteomic data, particularly the decreased expression of the ß5i (PSMB8) subunit immunoproteasome in MNs compared to HFFs and increased ß5 (PSMB5) in MNs compared to HFFs. CONCLUSION: The constitutive proteasome subunits are upregulated in iPSCs and NSCs from HFFs. Immunoproteasome subunit ß5i expression is higher in MNs than NSCs; however, overall, there is more of a constitutive proteasome structure in MNs when comparing HFFs to MNs. The proteasome composition may have implications for motor neuron development and neurodevelopmental diseases that warrant further investigation.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Axons/metabolism , Proteomics , Nerve Regeneration , Motor Neurons/metabolism , Neural Stem Cells/metabolism , Proteins/metabolism
7.
Front Immunol ; 14: 1128582, 2023.
Article in English | MEDLINE | ID: mdl-37228592

ABSTRACT

Introduction: Gene therapy holds promise to cure various diseases at the fundamental level. For that, efficient carriers are needed for successful gene delivery. Synthetic 'non-viral' vectors, as cationic polymers, are quickly gaining popularity as efficient vectors for transmitting genes. However, they suffer from high toxicity associated with the permeation and poration of the cell membrane. This toxic aspect can be eliminated by nanoconjugation. Still, results suggest that optimising the oligonucleotide complexation, ultimately determined by the size and charge of the nanovector, is not the only barrier to efficient gene delivery. Methods: We herein develop a comprehensive nanovector catalogue comprising different sizes of Au NPs functionalized with two different cationic molecules and further loaded with mRNA for its delivery inside the cell. Results and Discussion: Tested nanovectors showed safe and sustained transfection efficiencies over 7 days, where 50 nm Au NPs displayed the highest transfection rates. Remarkably, protein expression was increased when nanovector transfection was performed combined with chloroquine. Cytotoxicity and risk assessment demonstrated that nanovectors are safe, ascribed to lesser cellular damage due to their internalization and delivery via endocytosis. Obtained results may pave the way to design advanced and efficient gene therapies for safely transferring oligonucleotides.


Subject(s)
Gold , Metal Nanoparticles , RNA, Messenger , Transfection , Endocytosis
8.
Cell Commun Signal ; 9(1): 8, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21481269

ABSTRACT

Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs) present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

9.
Biomedicines ; 9(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34944744

ABSTRACT

Tissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI-a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning® PuraMatrix™ peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC). In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to non-embedded iNPCs. The treatment of spinal cord organotypic cultures also demonstrated that CURC enhances cell migration and prompts a neuron-like morphology of embedded iNPCs implanted over the tissue slices. Following sub-acute SCI by traumatic contusion in rats, the implantation of PM-embedded iNPCs and CURC with PPY fibers supported a significant increase in neuro-preservation (as measured by greater ßIII-tubulin staining of neuronal fibers) and decrease in the injured area (as measured by the lack of GFAP staining). This combination therapy also restricted platelet-derived growth factor expression, indicating a reduction in fibrotic pericyte invasion. Overall, these findings support PM-embedded iNPCs with CURC placed within an HA demilune scaffold containing PPY fibers as a minimally invasive combination-based alternative to cell transplantation alone.

10.
Stem Cell Res Ther ; 11(1): 213, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493487

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a chronic, progressive, and severe disease with a limited response to currently available therapies. Epithelial cell injury and failure of appropriate healing or regeneration are central to the pathogenesis of idiopathic pulmonary fibrosis. The purpose of this study is to investigate whether intratracheal transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can stop and reverse the fibrotic process in an experimental model of bleomycin-induced lung fibrosis in rats. METHODS: Human induced pluripotent stem cells were differentiated to alveolar type II-like cells and characterized. Lung fibrosis was induced in rats by a single intratracheal instillation of bleomycin. Animals were transplanted with human induced pluripotent stem cells differentiated to alveolar type II-like cells at a dose of 3 × 106 cells/animal 15 days after endotracheal bleomycin instillation when the animal lungs were already fibrotic. Animals were sacrificed 21 days after the induction of lung fibrosis. Lung fibrosis was assessed by hydroxiprolin content, histologic studies, and the expression of transforming growth factor-ß and α-smooth muscle actin. RESULTS: Cell transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can significantly reduce pulmonary fibrosis and improve lung alveolar structure, once fibrosis has already formed. This is associated with the inhibition of transforming growth factor-ß and α-smooth muscle actin in the damaged rat lung tissue. CONCLUSION: To our knowledge, this is the first data to demonstrate that at the fibrotic stage of the disease, intratracheal transplantation of human induced pluripotent differentiated to alveolar type II-like cells halts and reverses fibrosis.


Subject(s)
Bleomycin , Induced Pluripotent Stem Cells , Alveolar Epithelial Cells , Animals , Bleomycin/toxicity , Disease Models, Animal , Epithelial Cells , Humans , Lung , Rats
11.
J Clin Med ; 8(3)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823421

ABSTRACT

The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.

12.
J Clin Med ; 8(4)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965661

ABSTRACT

In this article, we will discuss the main aspects to be considered to define standard operation procedures (SOPs) for the creation of an induced pluripotent stem cell (iPSC) bank using cord blood (CB)-or similar cell type-bank guidelines for clinical aims. To do this, we adapt the pre-existing SOP for CB banking that can be complementary for iPSCs. Some aspects of iPSC manufacturing and the particular nature of these cells call for special attention, such as the potential multiple applications of the cells, proper explanation to the donor for consent of use, the genomic stability and the risk of genetic privacy disclosure. Some aspects of the iPSC SOP are solidly established by CB banking procedures, other procedures have good consensus in the scientific and medical community, while others still need to be further debated and settled. Given the international sharing vocation of iPSC banking, there is an urgent need by scientists, clinicians and regulators internationally to harmonize standards and allow future sample interchange between many iPSC bank initiatives that are springing up worldwide.

13.
Oncotarget ; 10(56): 5871-5887, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31645906

ABSTRACT

The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria.

14.
J Cell Physiol ; 214(2): 474-82, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17654484

ABSTRACT

Integrin Cytoplasmic domain-Associated Protein-1 (ICAP-1) binds specifically to the beta1 integrin subunit cytoplasmic domain. We observed that RNAi-induced knockdown of ICAP-1 reduced migration of C2C12 myoblasts on the beta1 integrin ligand laminin and that overexpression of ICAP-1 increased this migration. In contrast, migration on the beta3 integrin ligand vitronectin was not affected. ICAP-1 knockdown also greatly diminished migration of microvascular endothelial cells on collagen. The number of central focal adhesions in C2C12 cells on laminin was reduced by ICAP-1 knockdown and increased by ICAP-1 overexpression. Previously, we demonstrated that ICAP-1 binds to the ROCK-I kinase and translocates ROCK-I to the plasma membrane. We show here that the ROCK kinase inhibitor Y27362 reduces migration on laminin and causes a loss of central focal adhesions, similarly as ICAP-1 knockdown. ICAP-1 and ROCK were co-immune-precipitated from C2C12 cells, and in cells that overexpressed ICAP-1, YFP-ROCK was translocated to membrane ruffles. These results indicate that ICAP-1 regulates beta1 integrin-dependent cell migration by affecting the pattern of focal adhesion formation. This is likely due to ICAP-1-induced translocation of ROCK to beta1 integrin attachment sites.


Subject(s)
Cell Movement/physiology , Chemotaxis/physiology , Focal Adhesions/physiology , Intracellular Signaling Peptides and Proteins/physiology , Myoblasts/physiology , Actins/metabolism , Animals , Antibodies, Monoclonal/metabolism , Cell Line , DNA, Complementary , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Escherichia coli/genetics , Fluorescent Antibody Technique, Indirect , Glutathione Transferase/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Microscopy, Fluorescence , Phalloidine , Precipitin Tests , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/physiology , Transduction, Genetic , Transfection , Vinculin/metabolism , rho-Associated Kinases/metabolism
15.
Cell Transplant ; 25(10): 1833-1852, 2016 10.
Article in English | MEDLINE | ID: mdl-27075820

ABSTRACT

Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. However, there is still limited information on the behavior and differentiation pattern of transplanted iPSC-derived NSCs within the damaged spinal cord. We transplanted iPSC-derived NSCs, obtained from adult human somatic cells, into rats at 0 or 7 days after SCI, and evaluated motor-evoked potentials and locomotion of the animals. We histologically analyzed engraftment, proliferation, and differentiation of the iPSC-derived NSCs and the spared tissue in the spinal cords at 7, 21, and 63 days posttransplant. Both transplanted groups showed a late decline in functional recovery compared to vehicle-injected groups. Histological analysis showed proliferation of transplanted cells within the tissue and that cells formed a mass. At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Animals , Cell Lineage , Cells, Cultured , Cellular Microenvironment , Evoked Potentials , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Locomotion , Nestin/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord/metabolism , Spinal Cord/pathology , Transplantation, Heterologous
16.
Oncogene ; 23(29): 4959-65, 2004 Jun 24.
Article in English | MEDLINE | ID: mdl-15077169

ABSTRACT

Over the past decades, much has been learnt about the genes that contribute to oncogenic transformation of primary cells in vitro. However, much less is known about the genes that contribute to the later stages of tumor progression, in which cells of ever increasing malignancy arise through clonal selection in vivo. To search for genes that confer a tumor progression phenotype in vivo, we have used a functional genetic approach. We used adenovirus-transformed mouse embryo fibroblasts, which are tumorigenic in immunodeficient nude mice, but not in immunocompetent mice, due to strong cytotoxic T-cell-mediated immune rejection. We infected these cells in vitro with several high-complexity retroviral cDNA expression libraries and selected rare variants that formed tumors in immunocompetent mice. Using this approach, we identify here the TRK-T3 oncogene as a tumor progression gene. TRK-T3 does not inhibit T-cell reactivity towards the tumor cells. Instead, we find that cells expressing TRK-T3 enhances in vivo growth rate, most likely by stimulating anchorage-independent proliferation in growth factor-limiting conditions. Our data indicate that cDNA expression libraries can be used to identify tumor progression genes in vivo that cannot be readily identified using in vitro cell culture systems.


Subject(s)
Disease Progression , Neoplasms, Experimental/pathology , Oncogenes , Proto-Oncogene Proteins , Receptor, trkA/genetics , Animals , Cell Division , Cell Line, Transformed , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinases/physiology , Cytotoxicity, Immunologic , Fibroblasts , Humans , Mice , Mice, Nude , Retroviridae/genetics , Transfection
17.
J Clin Med ; 4(6): 1193-206, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26239553

ABSTRACT

The ability to generate inducible pluripotent stem cells (iPSCs) and the potential for their use in treatment of human disease is of immense interest. Autoimmune diseases, with their limited treatment choices are a potential target for the clinical application of stem cell and iPSC technology. IPSCs provide three potential ways of treating autoimmune disease; (i) providing pure replacement of lost cells (immuno-reconstitution); (ii) through immune-modulation of the disease process in vivo; and (iii) for the purposes of disease modeling in vitro. In this review, we will use examples of systemic, system-specific and organ-specific autoimmunity to explore the potential applications of iPSCs for treatment of autoimmune diseases and review the evidence of iPSC technology in auto-immunity to date.

18.
J Clin Med ; 4(2): 243-59, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-26239126

ABSTRACT

The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP) made from induced pluripotent stem cells (iPSCs) are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

19.
J Clin Med ; 4(4): 768-81, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-26239354

ABSTRACT

Congenital heart disease places a significant burden on the individual, family and community despite significant advances in our understanding of aetiology and treatment. Early research in ischaemic heart disease has paved the way for stem cell technology and bioengineering, which promises to improve both structural and functional aspects of disease. Stem cell therapy has demonstrated significant improvements in cardiac function in adults with ischaemic heart disease. This finding, together with promising case studies in the paediatric setting, demonstrates the potential for this treatment in congenital heart disease. Furthermore, induced pluripotent stems cell technology, provides a unique opportunity to address aetiological, as well as therapeutic, aspects of disease.

20.
Article in English | MEDLINE | ID: mdl-25984235

ABSTRACT

Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL