Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Brain Behav Immun ; 116: 237-258, 2024 02.
Article in English | MEDLINE | ID: mdl-38070618

ABSTRACT

Vagus nerve stimulation (VNS) has been identified as an innovative immunosuppressive treatment strategy in rodent studies. However, its' clinical potential is still unclear. Therefore, we aimed to assess whether VNS can reduce inflammatory proteins and/or immune cells in humans, through a pre-registered systematic review and meta-analysis according to PRISMA guidelines. The databases Cochrane, Pubmed and World of Knowledge were searched in duplicate up to the 3rd of March 2022 and publications from identified clinical trial registrations were identified until 20th of August 2023. Studies were included if they provided peer-reviewed data for humans who received VNS as short-term (<=1 day) or long-term (>=2 days-365 days) stimulation and reported at least one cytokine or immune cell after treatment.Screening of title, abstract, full text, and data extraction was performed in duplicate by two independent reviewers. Data were pooled using a random-effects model and meta-regression was performed for moderating factors. Reporting bias was assessed. The standardized mean difference (Hedge's g) was used to indicate overall differences of cytokine data (mean and standard deviation or median and interquartile range at the study level) to test our a-priori hypothesis. The systematic review of 36 studies with 1135 participants (355 receiving a control/sham condition and 780 receiving VNS) revealed anti-inflammatory effects of VNS for cytokines in several reports, albeit often in subgroup analyses, but our meta-analyses of 26 studies did not confirm these findings. Although most cytokines were numerically reduced, the reduction did not reach statistical significance after VNS: not in the between-group comparisons (short-term: TNF-α: g = -0.21, p = 0.359; IL-6: g = -0.94, p = 0.112; long-term: TNF-α: g = -0.13, p = 0.196; IL-6: g = -0.67, p = 0.306); nor in the within-study designs (short-term: TNF-α: g = -0.45, p = 0.630; IL-6: g = 0.28, p = 0.840; TNF-α: g = -0.53, p = 0.297; IL-6:g = -0.02, p = 0.954). Only the subgroup analysis of 4 long-term studies with acute inflammation was significant: VNS decreased CRP significantly more than sham stimulation. Additional subgroup analyses including stimulation duration, stimulation method (invasive/non-invasive), immune stimulation, and study quality did not alter results. However, heterogeneity was high, and most studies had poor to fair quality. Given the low number of studies for each disease, a disease-specific analysis was not possible. In conclusion, while numeric effects were reported in individual studies, the current evidence does not substantiate the claim that VNS impacts inflammatory cytokines in humans. However, it may be beneficial during acute inflammatory events. To assess its full potential, high-quality studies and technological advances are required.


Subject(s)
Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Tumor Necrosis Factor-alpha , Interleukin-6 , Cytokines/metabolism , Anti-Inflammatory Agents , Vagus Nerve
2.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955407

ABSTRACT

The gut microbiota encodes a broad range of enzymes capable of synthetizing various metabolites, some of which are still uncharacterized. One well-known class of microbiota-derived metabolites are the short-chain fatty acids (SCFAs) such as acetate, propionate, butyrate and valerate. SCFAs have long been considered a mere waste product of bacterial metabolism. Novel results have challenged this long-held dogma, revealing a central role for microbe-derived SCFAs in gut microbiota-host interaction. SCFAs are bacterial signaling molecules that act directly on host T lymphocytes by reprogramming their metabolic activity and epigenetic status. They have an essential biological role in promoting differentiation of (intestinal) regulatory T cells and in production of the anti-inflammatory cytokine interleukin-10 (IL-10). These small molecules can also reach the circulation and modulate immune cell function in remote tissues. In experimental models of autoimmune and inflammatory diseases, such as inflammatory bowel disease, multiple sclerosis or diabetes, a strong therapeutic potential of SCFAs through the modulation of effector T cell function was observed. In this review, we discuss current research activities toward understanding a relevance of microbial SCFA for treating autoimmune and inflammatory pathologies from in vitro to human studies.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Bacteria/metabolism , Butyrates , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Humans
3.
Neuroimage ; 244: 118566, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34509623

ABSTRACT

Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.


Subject(s)
Brain Stem/physiology , Magnetic Resonance Imaging/methods , Vagus Nerve Stimulation/methods , Vagus Nerve/physiology , Adaptation, Physiological , Adult , Affect , Afferent Pathways/physiology , Autonomic Nervous System/physiology , Cross-Over Studies , Female , Humans , Male , Peripheral Nervous System/physiology , Transcutaneous Electric Nerve Stimulation
4.
Neuroimage ; 194: 120-127, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30914385

ABSTRACT

Insulin modulates dopamine neuron activity in midbrain and affects processes underlying food intake behaviour, including impulsivity and reward processing. Here, we used intranasal administration and task-free functional MRI in humans to assess time- and dose-dependent effects of insulin on functional connectivity of the dopaminergic midbrain - and how these effects varied depending on systemic insulin sensitivity as measured by HOMA-IR. Specifically, we used a repeated-measures design with factors dose (placebo, 40 IU, 100 IU, 160 IU), time (7 time points during a 90 min post-intervention interval), and group (low vs. high HOMA-IR). A factorial analysis identified a three-way interaction (with whole-brain significance) with regard to functional connectivity between midbrain and the ventromedial prefrontal cortex. This interaction demonstrates that systemic insulin sensitivity modulates the temporal course and dose-dependent effects of intranasal insulin on midbrain functional connectivity. It suggests that altered insulin sensitivity may impact on dopaminergic projections of the midbrain and might underlie the dysregulation of reward-related and motivational behaviour in obesity and diabetes. Perhaps most importantly, the time courses of midbrain functional connectivity we present may provide useful guidance for the design of future human studies that utilize intranasal insulin administration.


Subject(s)
Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Mesencephalon/drug effects , Administration, Intranasal , Adult , Dose-Response Relationship, Drug , Humans , Insulin Resistance/physiology , Magnetic Resonance Imaging , Male , Overweight
7.
Nutrients ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337673

ABSTRACT

Lifestyle factors-such as diet, physical activity (PA), smoking, and alcohol consumption-have a significant impact on mortality as well as healthcare costs. Moreover, they play a crucial role in the development of type 2 diabetes mellitus (DM2). There also seems to be a link between lifestyle behaviours and insulin resistance, which is often a precursor of DM2. This study uses an enhanced Healthy Living Index (HLI) integrating accelerometric data and an Ecological Momentary Assessment (EMA) to explore differences in lifestyle between insulin-sensitive (IS) and insulin-resistant (IR) individuals. Moreover, it explores the association between lifestyle behaviours and inflammation. Analysing data from 99 participants of the mPRIME study (57 women and 42 men; mean age 49.8 years), we calculated HLI scores-ranging from 0 to 4- based on adherence to specific low-risk lifestyle behaviours, including non-smoking, adhering to a healthy diet, maximally moderate alcohol consumption, and meeting World Health Organization (WHO) PA guidelines. Insulin sensitivity was assessed using a Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and C-reactive protein (CRP) levels were used as a proxy for inflammation. Lifestyle behaviours, represented by HLI scores, were significantly different between IS and IR individuals (U = 1529.0; p = 0.023). The difference in the HLI score between IR and IS individuals was mainly driven by lower adherence to PA recommendations in the IR group. Moreover, reduced PA was linked to increased CRP levels in the IR group (r = -0.368, p = 0.014). Our findings suggest that enhancing PA, especially among individuals with impaired insulin resistance, holds significant promise as a preventive strategy.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Female , Middle Aged , Diabetes Mellitus, Type 2/prevention & control , Life Style , Insulin , Inflammation , Diet, Healthy , Healthy Lifestyle
8.
Front Endocrinol (Lausanne) ; 14: 1130203, 2023.
Article in English | MEDLINE | ID: mdl-37223038

ABSTRACT

Objective: While variations in the first intron of the fat mass and obesity-associated gene (FTO, rs9939609 T/A variant) have long been identified as a major contributor to polygenic obesity, the mechanisms underlying weight gain in risk allele carriers still remain elusive. On a behavioral level, FTO variants have been robustly linked to trait impulsivity. The regulation of dopaminergic signaling in the meso-striatal neurocircuitry by these FTO variants might represent one mechanism for this behavioral alteration. Notably, recent evidence indicates that variants of FTO also modulate several genes involved in cell proliferation and neuronal development. Hence, FTO polymorphisms might establish a predisposition to heightened trait impulsivity during neurodevelopment by altering structural meso-striatal connectivity. We here explored whether the greater impulsivity of FTO variant carriers was mediated by structural differences in the connectivity between the dopaminergic midbrain and the ventral striatum. Methods: Eighty-seven healthy normal-weight volunteers participated in the study; 42 FTO risk allele carriers (rs9939609 T/A variant, FTO + group: AT, AA) and 39 non-carriers (FTO - group: TT) were matched for age, sex and body mass index (BMI). Trait impulsivity was assessed via the Barratt Impulsiveness Scale (BIS-11) and structural connectivity between the ventral tegmental area/substantia nigra (VTA/SN) and the nucleus accumbens (NAc) was measured via diffusion weighted MRI and probabilistic tractography. Results: We found that FTO risk allele carriers compared to non-carriers, demonstrated greater motor impulsivity (p = 0.04) and increased structural connectivity between VTA/SN and the NAc (p< 0.05). Increased connectivity partially mediated the effect of FTO genetic status on motor impulsivity. Conclusion: We report altered structural connectivity as one mechanism by which FTO variants contribute to increased impulsivity, indicating that FTO variants may exert their effect on obesity-promoting behavioral traits at least partially through neuroplastic alterations in humans.


Subject(s)
Corpus Striatum , Impulsive Behavior , Humans , Genotype , Phenotype , Alleles , Dopamine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
9.
Front Psychiatry ; 14: 1198632, 2023.
Article in English | MEDLINE | ID: mdl-37840810

ABSTRACT

Background: The COVID-19 pandemic led to a higher incidence of depression and a worsening of psychiatric conditions, while pre-existing constraints of the healthcare system and safety regulations limited psychiatric care. Aims: We investigated the impact of the pandemic on the clinical care of patients with a single episode (SE-MDD) or major depressive disorder (MDD) in Germany. Methods: Nationwide inpatient data were extracted from the German Institute for Hospital Remuneration System for 2020 and 2021 (depression data) and the Robert Koch Institute (COVID-19 incidence). Changes in inpatients were tested with linear regression models. Local cases of depression in our department compared to 2019 were explored with one-way ANOVA and Dunnett's test. Results: Across Germany, the inpatient numbers with both SE-MDD and MDD declined by more than 50% during three out of four COVID-19 waves. Higher COVID-19 incidence correlated with decreased inpatient numbers. In our department, fewer MDD inpatients were treated in 2020 (adj. p < 0.001) and 2021 (adj. p < 0.001) compared to 2019, while the number of SE-MDD inpatients remained stable. During this period fewer elective and more emergency inpatients were admitted. In parallel, MDD outpatient admissions increased in 2021 compared to 2019 (adj. p = 0.002) and 2020 (adj. p = 0.003). Conclusion: During high COVID-19 infection rates, MDD patients received less inpatient care, which might cause poor outcomes in the near future. These data highlight the necessity for improved infrastructure in the in- and outpatient domains to facilitate accessibility to adequate care.

10.
Cell Rep Med ; 4(1): 100897, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652907

ABSTRACT

Feeding behavior must be continuously adjusted to match energy needs. Recent discoveries in murine models identified uridine as a regulator of energy balance. Here, we explore its contribution to the complex control of food intake in humans by administering a single dose of uridine monophosphate (UMP; 0.5 or 1 g) to healthy participants in two placebo-controlled studies designed to assess food behavior (registration: DRKS00014874). We establish that endogenous circulating uridine correlates with hunger and ensuing food consumption. It also dynamically decreases upon caloric ingestion, prompting its potential role in a negative feedback loop regulating energy intake. We further demonstrate that oral UMP administration temporarily increases circulating uridine and-when within the physiological range-enhances hunger and caloric intake proportionally to participants' basal energy needs. Overall, uridine appears as a potential target to tackle dysfunctions of feeding behavior in humans.


Subject(s)
Energy Intake , Hunger , Humans , Animals , Mice , Uridine , Energy Intake/physiology , Hunger/physiology , Uridine Monophosphate , Eating
11.
Nat Metab ; 5(8): 1352-1363, 2023 08.
Article in English | MEDLINE | ID: mdl-37592007

ABSTRACT

Survival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1). In a single-blinded, randomized, controlled, crossover basic human functional magnetic resonance imaging study relying on a computational model of the adaptive learning process underlying behavioural responses, we show that adaptive learning is reduced when metabolic sensing is impaired in obesity, as indexed by reduced insulin sensitivity (participants: N = 30 with normal insulin sensitivity; N = 24 with impaired insulin sensitivity). Treatment with the GLP-1 receptor agonist liraglutide normalizes impaired learning of sensory associations in men and women with obesity. Collectively, our findings reveal that GLP-1 receptor activation modulates associative learning in people with obesity via its central effects within the mesoaccumbens pathway. These findings provide evidence for how metabolic signals can act as neuromodulators to adapt our behaviour to our body's internal state and how GLP-1 receptor agonists work in clinics.


Subject(s)
Insulin Resistance , Liraglutide , Male , Humans , Female , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide 1 , Obesity/drug therapy
12.
Cell Metab ; 35(4): 571-584.e6, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36958330

ABSTRACT

Western diets rich in fat and sugar promote excess calorie intake and weight gain; however, the underlying mechanisms are unclear. Despite a well-documented association between obesity and altered brain dopamine function, it remains elusive whether these alterations are (1) pre-existing, increasing the individual susceptibility to weight gain, (2) secondary to obesity, or (3) directly attributable to repeated exposure to western diet. To close this gap, we performed a randomized, controlled study (NCT05574660) with normal-weight participants exposed to a high-fat/high-sugar snack or a low-fat/low-sugar snack for 8 weeks in addition to their regular diet. The high-fat/high-sugar intervention decreased the preference for low-fat food while increasing brain response to food and associative learning independent of food cues or reward. These alterations were independent of changes in body weight and metabolic parameters, indicating a direct effect of high-fat, high-sugar foods on neurobehavioral adaptations that may increase the risk for overeating and weight gain.


Subject(s)
Reward , Snacks , Humans , Obesity/metabolism , Weight Gain , Sugars
13.
Mol Metab ; 45: 101163, 2021 03.
Article in English | MEDLINE | ID: mdl-33453418

ABSTRACT

OBJECTIVE: To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA) midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by peripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in humans is lacking. METHODS: In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI³ 30 kg/m2) volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline. RESULTS: In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) = 5.31, p = 0.026, ß = 0.19) independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) = 1.93, p = 0.17, ß = -0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) = 6.23, p = 0.017, ß = -0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way interaction, F(1, 127) = 5.11, p = 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin sensitivity under GLP-1 administration. CONCLUSION: We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Hunger/physiology , Insulin Resistance , Motivation , Adult , Body Mass Index , Brain/metabolism , Female , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide-1 Receptor , Hand Strength , Humans , Hyperphagia , Insulin/metabolism , Liraglutide , Male , Obesity , Reward
14.
Neurosci Biobehav Rev ; 124: 100-123, 2021 05.
Article in English | MEDLINE | ID: mdl-33515607

ABSTRACT

Attention-deficit / hyperactivity disorder (ADHD) and Bipolar Disorder (BD) are common mental disorders with a high degree of comorbidity. However, no systematic review with meta-analysis has aimed to quantify the degree of comorbidity between both disorders. To this end we performed a systematic search of the literature in October 2020. In a meta-analysis of 71 studies with 646,766 participants from 18 countries, it was found that about one in thirteen adults with ADHD was also diagnosed with BD (7.95 %; 95 % CI: 5.31-11.06), and nearly one in six adults with BD had ADHD (17.11 %; 95 % CI: 13.05-21.59 %). Substantial heterogeneity of comorbidity rates was present, highlighting the importance of contextual factors: Heterogeneity could partially be explained by diagnostic system, sample size and geographical location. Age of BD onset occurred earlier in patients with comorbid ADHD (3.96 years; 95 % CI: 2.65-5.26, p < 0.001). Cultural and methodological differences deserve attention for evaluating diagnostic criteria and clinicians should be aware of the high comorbidity rates to prevent misdiagnosis and provide optimal care for both disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Adult , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/epidemiology , Awareness , Bipolar Disorder/complications , Bipolar Disorder/epidemiology , Child, Preschool , Comorbidity , Humans , Sample Size
16.
Sci Rep ; 9(1): 7222, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076634

ABSTRACT

Olfactory perception determines food selection behavior depending on energy homeostasis and nutritional status. The mechanisms, however, by which metabolic signals in turn regulate olfactory perception remain largely unclear. Given the evidence for direct insulin action on olfactory neurons, we tested olfactory performance (olfactory threshold, olfactory discrimination) in 36 subjects of normal- and overweight after administration of three different insulin doses (40 I.U., 100 I.U., 160 I.U.) or corresponding placebo volume in a within-subject design. Poor peripheral insulin sensitivity as quantified by HOMA-IR in baseline condition and increases in systemic insulin levels reactive to intranasal administration predicted poor olfactory performance. In contrast, intranasal insulin enhanced odor perception with a dose-dependent improvement of olfactory threshold. These findings indicate a new diametric impact of insulin on olfactory perception depending on peripheral or central availability.


Subject(s)
Insulin/administration & dosage , Olfactory Perception/physiology , Administration, Intranasal , Adult , Blood Glucose/analysis , Cross-Over Studies , Humans , Insulin/blood , Insulin/pharmacology , Insulin Resistance , Male , Olfactory Perception/drug effects , Placebo Effect , Single-Blind Method , Young Adult
17.
Front Neurol ; 10: 175, 2019.
Article in English | MEDLINE | ID: mdl-30891000

ABSTRACT

Autoimmune encephalitis often causes acute psychiatric symptoms and epileptic seizures. However, it is becoming increasingly clear that depending on the target antigen both symptoms and disease severity may vary. Furthermore, the identification and characterization of antibody subtypes are highly relevant for personalizing the treatment and to prevent relapses. Here we present an atypical case of encephalitis with cerebellar and temporal dysfunction but without seizures associated with high levels of cerebrospinal fluid neuropil antibodies against a yet unknown epitope on the neuronal surface in the cerebellum, hippocampus, thalamus, and the olfactory bulb. We treated the patient successfully with corticosteroids, plasmapheresis, and rituximab.

18.
Nat Commun ; 10(1): 336, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659189

ABSTRACT

To date, the spatiotemporal release of specific neurotransmitters at physiological levels in the human brain cannot be detected. Here, we present a method that relates minute-by-minute fluctuations of the positron emission tomography (PET) radioligand [11C]raclopride directly to subsecond dopamine release events. We show theoretically that synaptic dopamine release induces low frequency temporal variations of extrasynaptic extracellular dopamine levels, at time scales of one minute, that can evoke detectable temporal variations in the [11C]raclopride signal. Hence, dopaminergic activity can be monitored via temporal fluctuations in the [11C]raclopride PET signal. We validate this theory using fast-scan cyclic voltammetry and [11C]raclopride PET in mice during chemogenetic activation of dopaminergic neurons. We then apply the method to data from human subjects given a palatable milkshake and discover immediate and-for the first time-delayed food-induced dopamine release. This method enables time-dependent regional monitoring of stimulus-evoked dopamine release at physiological levels.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Raclopride/metabolism , Animals , Brain/metabolism , Brain/surgery , Eating , Electric Stimulation , Electrodes , Female , Humans , Male , Mice , Models, Biological , Positron-Emission Tomography/methods , Radioligand Assay , Temporal Lobe/metabolism , Temporal Lobe/surgery , Time Factors
19.
Cell Metab ; 28(1): 33-44.e3, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29909968

ABSTRACT

Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.


Subject(s)
Brain/physiology , Dietary Carbohydrates , Dietary Fats , Food Preferences/psychology , Reward , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nutritive Value
SELECTION OF CITATIONS
SEARCH DETAIL