Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Publication year range
1.
Exp Physiol ; 108(6): 891-911, 2023 06.
Article in English | MEDLINE | ID: mdl-37026596

ABSTRACT

NEW FINDINGS: What is the central question of this study? Can we manipulate muscle recruitment to differentially enhance skeletal muscle fatigue resistance? What is the main finding and its importance? Through manipulation of muscle activation patterns, it is possible to promote distinct microvascular growth. Enhancement of fatigue resistance is closely associated with the distribution of the capillaries within the muscle, not necessarily with quantity. Additionally, at the acute stages of remodelling in response to indirect electrical stimulation, the improvement in fatigue resistance appears to be primarily driven by vascular remodelling, with metabolic adaptation of secondary importance. ABSTRACT: Exercise involves a complex interaction of factors influencing muscle performance, where variations in recruitment pattern (e.g., endurance vs. resistance training) may differentially modulate the local tissue environment (i.e., oxygenation, blood flow, fuel utilization). These exercise stimuli are potent drivers of vascular and metabolic change. However, their relative contribution to adaptive remodelling of skeletal muscle and subsequent performance is unclear. Using implantable devices, indirect electrical stimulation (ES) of locomotor muscles of rat at different pacing frequencies (4, 10 and 40 Hz) was used to differentially recruit hindlimb blood flow and modulate fuel utilization. After 7 days, ES promoted significant remodelling of microvascular composition, increasing capillary density in the cortex of the tibialis anterior by 73%, 110% and 55% for the 4 Hz, 10 and 40 Hz groups, respectively. Additionally, there was remodelling of the whole muscle metabolome, including significantly elevated amino acid turnover, with muscle kynurenic acid levels doubled by pacing at 10 Hz (P < 0.05). Interestingly, the fatigue index of skeletal muscle was only significantly elevated in 10 Hz (58% increase) and 40 Hz (73% increase) ES groups, apparently linked to improved capillary distribution. These data demonstrate that manipulation of muscle recruitment pattern may be used to differentially expand the capillary network prior to altering the metabolome, emphasising the importance of local capillary supply in promoting exercise tolerance.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Rats , Animals , Muscle, Skeletal/physiology , Capillaries/physiology , Adaptation, Physiological , Electric Stimulation
2.
J Exp Biol ; 226(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-38059428

ABSTRACT

To celebrate its centenary year, Journal of Experimental Biology (JEB) commissioned a collection of articles examining the past, present and future of experimental biology. This Commentary closes the collection by considering the important research opportunities and challenges that await us in the future. We expect that researchers will harness the power of technological advances, such as '-omics' and gene editing, to probe resistance and resilience to environmental change as well as other organismal responses. The capacity to handle large data sets will allow high-resolution data to be collected for individual animals and to understand population, species and community responses. The availability of large data sets will also place greater emphasis on approaches such as modeling and simulations. Finally, the increasing sophistication of biologgers will allow more comprehensive data to be collected for individual animals in the wild. Collectively, these approaches will provide an unprecedented understanding of 'how animals work' as well as keys to safeguarding animals at a time when anthropogenic activities are degrading the natural environment.


Subject(s)
Environment , Genomics , Animals
3.
J Anat ; 240(4): 700-710, 2022 04.
Article in English | MEDLINE | ID: mdl-34761377

ABSTRACT

The motor unit comprises a variable number of muscle fibres that connect through myelinated nerve fibres to a motoneuron (MN), the central drivers of activity. At the simplest level of organisation there exist phenotypically distinct MNs that activate corresponding muscle fibre types, but within an individual motor pool there typically exists a mixed population of fast and slow firing MNs, innervating groups of Type II and Type I fibres, respectively. Characterising the heterogeneity across multiple levels of motor unit organisation is critical to understanding changes that occur in response to physiological and pathological perturbations. Through a comprehensive assessment of muscle histology and ex vivo function, mathematical modelling and neuronal tracing, we demonstrate regional heterogeneities at the level of the MN, muscle fibre type composition and oxygen delivery kinetics of the rat extensor digitorum longus (EDL) muscle. Specifically, the EDL contains two phenotypically distinct regions: a relatively oxidative medial and a more glycolytic lateral compartment. Smaller muscle fibres in the medial compartment, in combination with a greater local capillary density, preserve tissue O2 partial pressure (PO2 ) during modelled activity. Conversely, capillary supply to the lateral compartment is calculated to be insufficient to defend active muscle PO2 but is likely optimised to facilitate metabolite removal. Simulation of in vivo muscle length change and phasic activation suggest that both compartments are able to generate similar net power. However, retrograde tracing demonstrates (counter to previous observations) that a negative relationship between soma size and C-bouton density exists. Finally, we confirm a lack of specificity of SK3 expression to slow MNs. Together, these data provide a reference for heterogeneities across the rat EDL motor unit and re-emphasise the importance of sampling technique.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Animals , Capillaries , Motor Neurons , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Rats
4.
J Anat ; 241(5): 1157-1168, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33939175

ABSTRACT

Mammalian motor systems adapt to the demands of their environment. For example, muscle fibre types change in response to increased load or endurance demands. However, for adaptations to be effective, motoneurons must adapt such that their properties match those of the innervated muscle fibres. We used a rat model of chronic functional overload to assess adaptations to both motoneuron size and a key modulatory synapse responsible for amplification of motor output, C-boutons. Overload of extensor digitorum longus (EDL) muscles was induced by removal of their synergists, tibialis anterior muscles. Following 21 days survival, EDL muscles showed an increase in fatigue resistance and a decrease in force output, indicating a shift to a slower phenotype. These changes were reflected by a decrease in motoneuron size. However, C-bouton complexes remained largely unaffected by overload. The C-boutons themselves, quantified by expression of vesicular acetylcholine transporter, were similar in size and density in the control and overload conditions. Expression of the post-synaptic voltage-gated potassium channel (KV 2.1) was also unchanged. Small conductance calcium-activated potassium channels (SK3) were expressed in most EDL motoneurons, despite this being an almost exclusively fast motor pool. Overload induced a decrease in the proportion of SK3+ cells, however, there was no change in density or size of clusters. We propose that reductions in motoneuron size may promote early recruitment of EDL motoneurons, but that C-bouton plasticity is not necessary to increase the force output required in response to muscle overload.


Subject(s)
Potassium Channels, Calcium-Activated , Potassium Channels, Voltage-Gated , Animals , Mammals , Motor Neurons/physiology , Muscle, Skeletal/innervation , Rats , Vesicular Acetylcholine Transport Proteins
5.
J Physiol ; 599(15): 3715-3733, 2021 08.
Article in English | MEDLINE | ID: mdl-34107075

ABSTRACT

KEY POINTS: Capillary rarefaction is hypothesized to contribute to impaired exercise tolerance in cardiovascular disease, but it remains a poorly exploited therapeutic target for improving skeletal muscle performance. Using an abdominal aortic coarctation rat model of compensatory cardiac hypertrophy, we determine the efficacy of aerobic exercise for the prevention of, and mechanical overload for, restoration of hindlimb muscle fatigue resistance and microvascular impairment in the early stages of heart disease. Impaired muscle fatigue resistance was found after development of cardiac hypertrophy, but this impairment was prevented by low-intensity aerobic exercise and recovered after mechanical stretch due to muscle overload. Changes in muscle fatigue resistance were closely related to functional (i.e. perfused) microvascular density, independent of arterial blood flow, emphasizing the critical importance of optimal capillary diffusion for skeletal muscle function. Pro-angiogenic therapies are an important tool for improving skeletal muscle function in the incipient stages of heart disease. ABSTRACT: Microvascular rarefaction may contribute to declining skeletal muscle performance in cardiac and vascular diseases. It remains uncertain to what extent microvascular rarefaction occurs in the earliest stages of these conditions, if impaired blood flow is an aggravating factor and whether angiogenesis restores muscle performance. To investigate this, the effects of aerobic exercise (voluntary wheel running) and functional muscle overload on the performance, femoral blood flow (FBF) and microvascular perfusion of the extensor digitorum longus (EDL) were determined in a chronic rat model of compensatory cardiac hypertrophy (CCH, induced by surgically imposed abdominal aortic coarctation). CCH was associated with hypertension (P = 0.001 vs. Control) and increased relative heart mass (P < 0.001). Immediately upon placing the aortic band (i.e. before development of CCH), post-fatigue test FBF was reduced (P < 0.003), coinciding with attenuated fatigue resistance (P = 0.039) indicating an acute arterial perfusion constraint on muscle performance. While FBF was normalized during CCH in chronic groups (P > 0.05) fatigue resistance remained reduced (P = 0.039) and was associated with reduced (P = 0.009) functional capillarity after development of CCH without intervention, indicating a microvascular limitation to muscle performance. Normalization of functional capillarity after aerobic exercise (P = 0.065) and overload (P = 0.329) in CCH coincided with restoration to control levels of muscle fatigue resistance (P > 0.999), although overload-induced EDL hypertrophy (P = 0.027) and wheel-running velocity and duration (both P < 0.05) were attenuated after aortic banding. These data show that reductions in skeletal muscle performance during CCH can be countered by improving functional capillarity, providing a therapeutic target to improve skeletal muscle function in chronic diseases.


Subject(s)
Motor Activity , Muscle Fatigue , Animals , Capillary Action , Cardiomegaly/prevention & control , Muscle, Skeletal , Rats
6.
J Physiol ; 599(4): 1199-1224, 2021 02.
Article in English | MEDLINE | ID: mdl-33146892

ABSTRACT

KEY POINTS: Spinal treatment can restore diaphragm function in all animals 1 month following C2 hemisection induced paralysis. Greater recovery occurs the longer after injury the treatment is applied. Through advanced assessment of muscle mechanics, innovative histology and oxygen tension modelling, we have comprehensively characterized in vivo diaphragm function and phenotype. Muscle work loops reveal a significant deficit in diaphragm functional properties following chronic injury and paralysis, which are normalized following restored muscle activity caused by plasticity-induced spinal reconnection. Injury causes global and local alterations in diaphragm muscle vascular supply, limiting oxygen diffusion and disturbing function. Restoration of muscle activity reverses these alterations, restoring oxygen supply to the tissue and enabling recovery of muscle functional properties. There remain metabolic deficits following restoration of diaphragm activity, probably explaining only partial functional recovery. We hypothesize that these deficits need to be resolved to restore complete respiratory motor function. ABSTRACT: Months after spinal cord injury (SCI), respiratory deficits remain the primary cause of morbidity and mortality for patients. It is possible to induce partial respiratory motor functional recovery in chronic SCI following 2 weeks of spinal neuroplasticity. However, the peripheral mechanisms underpinning this recovery are largely unknown, limiting development of new clinical treatments with potential for complete functional restoration. Utilizing a rat hemisection model, diaphragm function and paralysis was assessed and recovered at chronic time points following trauma through chondroitinase ABC induced neuroplasticity. We simulated the diaphragm's in vivo cyclical length change and activity patterns using the work loop technique at the same time as assessing global and local measures of the muscles histology to quantify changes in muscle phenotype, microvascular composition, and oxidative capacity following injury and recovery. These data were fed into a physiologically informed model of tissue oxygen transport. We demonstrate that hemidiaphragm paralysis causes muscle fibre hypertrophy, maintaining global oxygen supply, although it alters isolated muscle kinetics, limiting respiratory function. Treatment induced recovery of respiratory activity normalized these effects, increasing oxygen supply, restoring optimal diaphragm functional properties. However, metabolic demands of the diaphragm were significantly reduced following both injury and recovery, potentially limiting restoration of normal muscle performance. The mechanism of rapid respiratory muscle recovery following spinal trauma occurs through oxygen transport, metabolic demand and functional dynamics of striated muscle. Overall, these data support a systems-wide approach to the treatment of SCI, and identify new targets to mediate complete respiratory recovery.


Subject(s)
Diaphragm , Spinal Cord Injuries , Animals , Humans , Kinetics , Oxygen , Phrenic Nerve , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord
7.
J Physiol ; 599(3): 981-1001, 2021 02.
Article in English | MEDLINE | ID: mdl-33347612

ABSTRACT

KEY POINTS: Heart failure is characterised by limb and respiratory muscle impairments that limit functional capacity and quality of life. However, compared with heart failure with reduced ejection fraction (HFrEF), skeletal muscle alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly explored. Here we report that obese-HFpEF induces multiple skeletal muscle alterations in the rat hindlimb, including impaired muscle mechanics related to shortening velocity, fibre atrophy, capillary loss, and an impaired blood flow response to contractions that implies a perfusive oxygen delivery limitation. We also demonstrate that obese-HFpEF is characterised by diaphragmatic alterations similar to those caused by denervation - atrophy in Type IIb/IIx (fast/glycolytic) fibres and hypertrophy in Type I (slow/oxidative) fibres. These findings extend current knowledge in HFpEF skeletal muscle physiology, potentially underlying exercise intolerance, which may facilitate future therapeutic approaches. ABSTRACT: Peripheral skeletal muscle and vascular alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly identified, with limited therapeutic targets. This study used a cardiometabolic obese-HFpEF rat model to comprehensively phenotype skeletal muscle mechanics, blood flow, microvasculature and fibre atrophy. Lean (n = 8) and obese-HFpEF (n = 8) ZSF1 rats were compared. Skeletal muscles (soleus and diaphragm) were assessed for in vitro contractility (isometric and isotonic properties) alongside indices of fibre-type cross-sectional area, myosin isoform, and capillarity, and estimated muscle PO2 . In situ extensor digitorum longus (EDL) contractility and femoral blood flow were assessed. HFpEF soleus demonstrated lower absolute maximal force by 22%, fibre atrophy by 24%, a fibre-type shift from I to IIa, and a 17% lower capillary-to-fibre ratio despite increased capillary density (all P < 0.05) with preserved muscle PO2 (P = 0.115) and isometric specific force (P > 0.05). Soleus isotonic properties (shortening velocity and power) were impaired by up to 17 and 22%, respectively (P < 0.05), while the magnitude of the exercise hyperaemia was attenuated by 73% (P = 0.012) in line with higher muscle fatigue by 26% (P = 0.079). Diaphragm alterations (P < 0.05) included Type IIx fibre atrophy despite Type I/IIa fibre hypertrophy, with increased indices of capillarity alongside preserved contractile properties during isometric, isotonic, and cyclical contractions. In conclusion, obese-HFpEF rats demonstrated blunted skeletal muscle blood flow during contractions in parallel to microvascular structural remodelling, fibre atrophy, and isotonic contractile dysfunction in the locomotor muscles. In contrast, diaphragm phenotype remained well preserved. This study identifies numerous muscle-specific impairments that could exacerbate exercise intolerance in obese-HFpEF.


Subject(s)
Heart Failure , Animals , Muscle Contraction , Muscle, Skeletal , Obesity , Quality of Life , Rats , Stroke Volume
8.
Microcirculation ; 28(4): e12677, 2021 05.
Article in English | MEDLINE | ID: mdl-33417723

ABSTRACT

OBJECTIVE: Adequacy of the microcirculation is essential for maintaining repetitive skeletal muscle function while avoiding fatigue. It is unclear, however, whether capillary remodelling after different angiogenic stimuli is comparable in terms of vessel distribution and consequent functional adaptations. We determined the physiological consequences of two distinct mechanotransductive stimuli: (1) overload-mediated abluminal stretch (OV); (2) vasodilator-induced shear stress (prazosin, PR). METHODS: In situ EDL fatigue resistance was determined after 7 or 14 days of intervention, in addition to measurements of femoral artery flow. Microvascular composition (muscle histology) and oxidative capacity (citrate synthase activity) were quantified, and muscle PO2 calculated using advanced mathematical modelling. RESULTS: Compared to controls, capillary-to-fiber ratio was higher after OV14 (134%, p < .001) and PR14 (121%, p < .05), although fatigue resistance only improved after overload (7 days: 135%, 14 days: 125%, p < .05). In addition, muscle overload improved local capillary supply indices and reduced CS activity, while prazosin treatment failed to alter either index of aerobic capacity. CONCLUSION: Targeted capillary growth in response to abluminal stretch is a potent driver of improved muscle fatigue resistance, while shear stress-driven angiogenesis has no beneficial effect on muscle function. In terms of capillarity, more is not necessarily better.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists , Capillaries , Motor Activity , Muscle, Skeletal , Neovascularization, Physiologic , Prazosin , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/physiology , Capillaries/drug effects , Capillaries/growth & development , Capillaries/physiology , Electric Stimulation , Male , Microcirculation/drug effects , Microcirculation/physiology , Microvessels/drug effects , Microvessels/physiology , Models, Animal , Motor Activity/physiology , Muscle Fatigue/drug effects , Muscle Fatigue/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Prazosin/pharmacology , Rats , Rats, Wistar
9.
J Exp Biol ; 224(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34042975

ABSTRACT

Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.


Subject(s)
Ecosystem , Perciformes , Animals , Antarctic Regions , Fishes , Heart
10.
Article in English | MEDLINE | ID: mdl-33444775

ABSTRACT

Krogh's Nobel prize for insightful studies into the physiology of capillaries heralded a revolution in understanding that continues today. The view of passive conduits has been replaced by capillaries recognised as a key element in haemodynamic control, offering both a site where changes in tissue demand are sensed and a driver of integrated vascular responses. In addition, the capillary bed is known to play an important role in metabolic, hormonal and immune homeostasis. Not surprisingly, therefore, microvascular dysfunction is a hallmark of many central and peripheral diseases, leading to widespread morbidity and mortality. Consequently, there is growing interest in how best to specifically target this organ-system by means of effective angiotherapies. Underpinning a lot of our current understanding of capillary physiology has been a recognition of functional heterogeneity among different microvascular beds. In addition, there is increasing awareness of the role that spatial heterogeneity plays in determining both physiological and pathological outcomes that has led to an appreciation that quality, rather than just quantity of microvascular supply is important. This has required a re-appraisal of the methods used to determine both the extent and topology of the capillary network, with the benefit of facilitating new ways of exploring dynamic regulation of capillary supply and its potential consequences.


Subject(s)
Cardiology/history , Hemodynamics , Muscle, Skeletal/metabolism , Muscles/metabolism , Oxygen/chemistry , Animals , Capillaries/physiology , Cardiology/methods , Diffusion , History, 20th Century , Humans , Models, Biological , Models, Theoretical , Oxygen/metabolism , Oxygen Consumption , Perfusion
11.
J Physiol ; 598(6): 1187-1203, 2020 03.
Article in English | MEDLINE | ID: mdl-32012275

ABSTRACT

KEY POINTS: Loss of skeletal muscle capillaries is thought to contribute to a reduction in exercise tolerance, but the relative contribution of a compromised microcirculation with disease, in isolation of co-morbidities, to impaired muscle function is unknown. We therefore developed a novel method to randomly occlude capillaries in the rat hindlimb to mimic the capillary rarefaction observed in many conditions. We demonstrate that muscle fatigue resistance is closely coupled with functional microvascular density, independent of arterial blood flow, while disturbance of the microcirculation leads to long-term impairment of muscle function if left untreated. Mechanical stretch due to muscle overload causes a restoration of fatigue resistance via angiogenic remodelling. These observations highlight the importance of a healthy microcirculation and suggest that restoring impaired microvascular supply, regardless of disease co-morbidities, will assist recovery of exercise tolerance in a variety of conditions that limit quality of life. ABSTRACT: To what extent microvascular rarefaction contributes to impaired skeletal muscle function remains unknown. Our understanding of whether pathological changes in the microcirculation can be reversed remains limited by a lack of basic physiological data in otherwise healthy tissue. The principal objectives here were to: (1) quantify the effect of random microvascular rarefaction on limb perfusion and muscle performance, and (2) determine if these changes could be reversed. We developed a novel protocol in rats whereby microspheres injected into the femoral artery allowed a unilateral reduction in functional capillary density in the extensor digitorum longus (EDL), and assessed acute and chronic effects on muscle function. Simultaneous bilateral EDL force and hindlimb blood flow measurements were made during electrical stimulation. Following functional capillary rarefaction there was an acute microsphere dose-dependent reduction in muscle fatigue resistance (P < 0.001), despite preserved femoral artery perfusion. Histological analysis of EDL samples taken from injected animals confirmed a positive correlation between the proportion of functional capillaries and fatigue resistance (P = 0.002). Such impaired performance persisted for at least 2 weeks (P = 0.016). Concomitant mechanical overload improved both perfused capillary density and fatigue resistance (P<0.05), confirming that the capacity for muscle remodelling was retained following chronic distributed ischaemia, and that the impact of capillary rarefaction could be alleviated. These results demonstrate that loss of functional capillaries is detrimental to muscle function, even in otherwise healthy tissue, independent of arterial perfusion. Restoration of muscle performance following a mechanical overload stimulus indicates that angiogenic treatments to alleviate microvascular rarefaction may be key to restoring exercise tolerance.


Subject(s)
Capillaries/physiopathology , Microvascular Rarefaction , Muscle Fatigue , Muscle, Skeletal/physiopathology , Physical Conditioning, Animal , Animals , Microcirculation , Muscle, Skeletal/blood supply , Rats
12.
Muscle Nerve ; 59(3): 370-379, 2019 03.
Article in English | MEDLINE | ID: mdl-30414320

ABSTRACT

INTRODUCTION: The morphological characteristics of skeletal muscles innervated caudal to a spinal cord injury (SCI) undergo dramatic phenotypic and microvascular changes. METHOD: Female Sprague-Dawley rats received a severe contusion at thoracic level 9/10 and were randomly assigned to locomotor training, epidural stimulation, or a combination of the treatment groups (CB). Fiber type composition and capillary distribution were assessed in phenotypically distinct compartments of the tibialis anterior. RESULTS: Spinal cord injury induced a shift in type II fiber phenotype from oxidative to glycolytic (P < 0.05) as well as capillary loss within the oxidative core and glycolytic cortex; the CB treatment best maintained capillary supply within both compartments. DISCUSSION: The angiogenic response of CB training improved capillary distribution across the muscle; capillary distribution became spatially more homogeneous and mean capillary supply area decreased, potentially improving oxygenation. There is an important role for weight-bearing training in maintaining the oxidative phenotype of muscle after SCI. Muscle Nerve 59:370-379, 2019.


Subject(s)
Capillaries/pathology , Exercise Therapy/methods , Physical Conditioning, Animal/methods , Spinal Cord Injuries/pathology , Spinal Cord Injuries/rehabilitation , Animals , Atrophy , Electric Stimulation , Epidural Space , Female , Immunohistochemistry , Locomotion , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Neovascularization, Physiologic , Pilot Projects , Rats , Rats, Sprague-Dawley , Recovery of Function
13.
Article in English | MEDLINE | ID: mdl-30594528

ABSTRACT

Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore are especially reliant on cardiovascular regulation to augment oxygen transport when oxygen demand increases, such as during activity and warming. Using both in vivo and in vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-established cardio- and vasoactive molecules, in regulating the cardiovascular system of the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility (increasing twitch force and contraction kinetics in isometric myocardial strip preparations) and accelerating heart rate (ƒH), adrenaline (5 nmol kg-1 bolus intra-arterial injection) did not significantly increase cardiac output (Q̇) in vivo because it elicited a large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Q̇ by increasing Gsys, a change reminiscent of that previously reported during both acute warming and invoked activity. Our data thus illustrate how Q̇ in C. aceratus may be much more dependent on peripheral control of vasomotor tone than direct regulation of the heart.


Subject(s)
Adenosine/physiology , Cardiac Output , Cardiovascular Physiological Phenomena , Epinephrine/physiology , Perciformes/physiology , Animals , Antarctic Regions
14.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013688

ABSTRACT

Pulmonary arterial hypertension (PAH) results in hypertrophic remodeling of the right ventricle (RV) to overcome increased pulmonary pressure. This increases the O2 consumption of the myocardium, and without a concomitant increase in energy generation, a mismatch with demand may occur. Eventually, RV function can no longer be sustained, and RV failure occurs. Beta-adrenergic blockers (BB) are thought to improve survival in left heart failure, in part by reducing energy expenditure and hypertrophy, however they are not currently a therapy for PAH. The monocrotaline (MCT) rat model of PAH was used to investigate the consequence of RV failure on myocardial oxygenation and mitochondrial function. A second group of MCT rats was treated daily with the beta-1 blocker metoprolol (MCT + BB). Histology confirmed reduced capillary density and increased capillary supply area without indications of capillary rarefaction in MCT rats. A computer model of O2 flux was applied to the experimentally recorded capillary locations and predicted a reduction in mean tissue PO2 in MCT rats. The fraction of hypoxic tissue (defined as PO2 < 0.5 mmHg) was reduced following beta-1 blocker (BB) treatment. The functionality of the creatine kinase (CK) energy shuttle was measured in permeabilized RV myocytes by sequential ADP titrations in the presence and absence of creatine. Creatine significantly decreased the KmADP in cells from saline-injected control (CON) rats, but not MCT rats. The difference in KmADP with or without creatine was not different in MCT + BB cells compared to CON or MCT cells. Improved myocardial energetics could contribute to improved survival of PAH with chronic BB treatment.


Subject(s)
Energy Metabolism , Ventricular Dysfunction, Right/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Creatine Kinase/metabolism , Disease Models, Animal , Enzyme Activation , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Monocrotaline/metabolism , Monocrotaline/pharmacology , Muscle Cells/drug effects , Muscle Cells/metabolism , Oxygen/metabolism , Rats
15.
Exp Physiol ; 103(1): 111-124, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29076192

ABSTRACT

NEW FINDINGS: What is the central question of this study? Mammalian muscle is typically heterogeneous in fibre-type distribution, with distinct regional variation in composition. The effects this might have on mechanical performance are largely unknown. What is the main finding and its importance? Contractile properties vary regionally within a heterogeneous muscle. The mixed extensor digitorum longus muscle has phenotypically distinct compartments that differ in their isometric twitch kinetics, the optimal cycle frequency for maximal power generation and fatigue resistance. The mechanisms underpinning the decline in performance during fatigue differ between compartments. Regional variation in mechanical performance suggests that regions of the extensor digitorum longus muscle might be differentially recruited during locomotion, depending upon functional demand. Fibre-type composition is heterogeneous, and distribution varies spatially in many muscles, indicating that there might be regional variation in recruitment and mechanical output. The rat extensor digitorum longus muscle is composed of predominantly fast-twitch fibres and exhibits a gradient in phenotype, resulting in oxidative medial (areal composition 24.3% type I/IIa) and glycolytic lateral (92.4% type IIx/IIb) compartments. Here, we investigated the variation in mechanical performance between the medial and lateral compartments during isometric, isotonic and cyclical contractions. Isometric tetanic stress and force-velocity relationships were similar in both compartments, but isometric twitch kinetics were slower in the medial compared with the lateral compartment. The medial compartment also had a lower optimal cycle frequency for maximal net power generation (11 versus 15 Hz; P < 0.05) attributable to slower isometric kinetics, resulting in a lower level of activation and reduced net work generation at higher cycle frequencies, compared with the lateral compartment. The more oxidative, medial compartment had higher fatigue resistance, maintaining net power 26% longer than the lateral compartment. The predominant mechanisms underpinning the decrease in net power varied between the compartments, resulting from an increase in the work to extend the muscle and from a reduction in work during shortening in the medial and lateral compartments, respectively. Regional variation in mechanical performance and resistance to fatigue within a mixed muscle suggests that a differential recruitment pattern is likely during locomotion, with the medial compartment being used during slow-speed locomotion and the lateral compartment during burst activities.


Subject(s)
Isometric Contraction/physiology , Isotonic Contraction/physiology , Muscle Fatigue/physiology , Muscle Fibers, Skeletal/physiology , Animals , Biomechanical Phenomena/physiology , Male , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle, Skeletal/physiology , Rats , Rats, Wistar
16.
J Exp Biol ; 221(Pt 15)2018 08 13.
Article in English | MEDLINE | ID: mdl-29967219

ABSTRACT

We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8°C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14°C, respectively). Routine cardiac output (Q̇) for C. aceratus at ∼0°C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q̇ increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming.


Subject(s)
Cardiovascular Physiological Phenomena , Hot Temperature/adverse effects , Perciformes/physiology , Animals , Antarctic Regions , Cardiac Output/physiology , Cardiovascular System/physiopathology , Heart Rate/physiology , Oxygen Consumption/physiology
17.
J Exp Biol ; 221(Pt 22)2018 11 19.
Article in English | MEDLINE | ID: mdl-30291156

ABSTRACT

In all vertebrates studied to date, CO2 excretion depends on the enzyme carbonic anhydrase (CA) that catalyses the rapid conversion of HCO3- to CO2 at the gas-exchange organs. The largest pool of CA is present within red blood cells (RBCs) and, in some vertebrates, plasma-accessible CA (paCA) isoforms participate in CO2 excretion. However, teleost fishes typically do not have paCA at the gills and CO2 excretion is reliant entirely on RBC CA - a strategy that is not possible in icefishes. As the result of a natural knockout, Antarctic icefishes (Channichthyidae) are the only known vertebrates that do not express haemoglobin (Hb) as adults, and largely lack RBCs in the circulation (haematocrit <1%). Previous work has indicated the presence of high levels of membrane-bound CA activity in the gills of icefishes, but without determining its cellular orientation. Thus, we hypothesised that icefishes express a membrane-bound CA isoform at the gill that is accessible to the blood plasma. The CA distribution was compared in the gills of two closely related notothenioid species, one with Hb and RBCs (Notothenia rossii) and one without (Champsocephalus gunnari). Molecular, biochemical and immunohistochemical markers indicate high levels of a Ca4 isoform in the gills of the icefish (but not the red-blooded N. rossii), in a plasma-accessible location that is consistent with a role in CO2 excretion. Thus, in the absence of RBC CA, the icefish gill could exclusively provide the catalytic activity necessary for CO2 excretion - a pathway that is unlike that of any other vertebrate.


Subject(s)
Carbonic Anhydrases/analysis , Gills/enzymology , Perciformes/metabolism , Animals , Antarctic Regions , Carbon Dioxide/metabolism , Erythrocytes/enzymology , Gills/metabolism , Immunohistochemistry , Plasma/enzymology
18.
J Exp Biol ; 221(Pt 15)2018 08 13.
Article in English | MEDLINE | ID: mdl-29895681

ABSTRACT

Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance.


Subject(s)
Hot Temperature , Mitochondria, Heart/metabolism , Perciformes/metabolism , Adenosine Triphosphate/metabolism , Animals , Antarctic Regions , Citrate (si)-Synthase/metabolism , L-Lactate Dehydrogenase/metabolism , Myocardium/enzymology , Myocardium/metabolism
19.
J Exp Biol ; 220(Pt 3): 445-454, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27872214

ABSTRACT

The effects of sustained anoxia on cardiac electrical excitability were examined in the anoxia-tolerant crucian carp (Carassius carassius). The electrocardiogram (ECG) and expression of excitation-contraction coupling genes were studied in fish acclimatised to normoxia in summer (+18°C) or winter (+2°C), and in winter fish after 1, 3 and 6 weeks of anoxia. Anoxia induced a sustained bradycardia from a heart rate of 10.3±0.77 beats min-1 to 4.1±0.29 beats min-1 (P<0.05) after 5 weeks, and heart rate slowly recovered to control levels when oxygen was restored. Heart rate variability greatly increased under anoxia, and completely recovered under re-oxygenation. The RT interval increased from 2.8±0.34 s in normoxia to 5.8±0.44 s under anoxia (P<0.05), which reflects a doubling of the ventricular action potential (AP) duration. Acclimatisation to winter induced extensive changes in gene expression relative to summer-acclimatised fish, including depression in those genes coding for the sarcoplasmic reticulum calcium pump (Serca2a_q2) and ATP-sensitive K+ channels (Kir6.2) (P<0.05). Genes of delayed rectifier K+ (kcnh6) and Ca2+ channels (cacna1c) were up-regulated in winter fish (P<0.05). In contrast, the additional challenge of anoxia caused only minor changes in gene expression, e.g. depressed expression of Kir2.2b K+ channel gene (kcnj12b), whereas expression of Ca2+ (cacna1a, cacna1c and cacna1g) and Na+ channel genes (scn4a and scn5a) was not affected. These data suggest that low temperature pre-conditions the crucian carp heart for winter anoxia, whereas sustained anoxic bradycardia and prolongation of AP duration are directly induced by oxygen shortage without major changes in gene expression.


Subject(s)
Adaptation, Physiological , Carps/physiology , Oxygen/metabolism , Acclimatization , Action Potentials , Anaerobiosis , Animals , Carps/genetics , Electrocardiography , Gene Expression Regulation , Heart/physiology , Heart Rate , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL