Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(14): 7990-8000, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32198206

ABSTRACT

Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression. Akita mice were highly susceptible to AF in association with increased P-wave duration and slowed atrial conduction velocity. In a second model of type 1 DM, mice treated with streptozotocin (STZ) showed a similar increase in susceptibility to AF. Chronic insulin treatment reduced susceptibility and duration of AF and shortened P-wave duration in Akita mice. Atrial action potential (AP) morphology was altered in Akita mice due to a reduction in upstroke velocity and increases in AP duration. In Akita mice, atrial Na+ current (INa) and repolarizing K+ current (IK) carried by voltage gated K+ (Kv1.5) channels were reduced. The reduction in INa occurred in association with reduced expression of SCN5a and voltage gated Na+ (NaV1.5) channels as well as a shift in INa activation kinetics. Insulin potently and selectively increased INa in Akita mice without affecting IK Chronic insulin treatment increased INa in association with increased expression of NaV1.5. Acute insulin also increased INa, although to a smaller extent, due to enhanced insulin signaling via phosphatidylinositol 3,4,5-triphosphate (PIP3). Our study reveals a critical, selective role for insulin in regulating atrial INa, which impacts susceptibility to AF in type 1 DM.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Remodeling/physiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Insulin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Atrial Remodeling/immunology , Cells, Cultured , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Echocardiography , Electrocardiography , Heart Atria/cytology , Heart Atria/metabolism , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Insulin/administration & dosage , Insulin/genetics , Kv1.5 Potassium Channel/metabolism , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Potassium/metabolism , Primary Cell Culture , Sodium/metabolism , Streptozocin/toxicity
2.
Clin Exp Pharmacol Physiol ; 47(5): 751-758, 2020 05.
Article in English | MEDLINE | ID: mdl-31901211

ABSTRACT

The renin angiotensin system (RAS) regulates fluid balance, blood pressure and maintains vascular tone. The potent vasoconstrictor angiotensin II (Ang II) produced by angiotensin-converting enzyme (ACE) comprises the classical RAS. The non-classical RAS involves the conversion of Ang II via ACE2 into the vasodilator Ang (1-7) to counterbalance the effects of Ang II. Furthermore, ACE2 converts AngA into another vasodilator named alamandine. The over activation of the classical RAS (increased vasoconstriction) and depletion of the non-classical RAS (decreased vasodilation) results in vascular dysfunction. Vascular dysfunction is the leading cause of atherosclerosis and cardiovascular disease (CVD). Additionally, local RAS is expressed in various tissues and regulates cellular functions. RAS dysregulation is involved in other several diseases such as inflammation, renal dysfunction and even cancer growth. An approach in restoring vascular dysfunction and other pathological diseases is to either increase the activity of ACE2 or reduce the effect of the classical RAS by counterbalancing Ang II effects. The antitrypanosomal agent, diminazene aceturate (DIZE), is one approach in activating ACE2. DIZE has been shown to exert beneficial effects in CVD experimental models of hypertension, myocardial infarction, type 1 diabetes and atherosclerosis. Thus, this review focuses on DIZE and its effect in several tissues such as blood vessels, cardiac, renal, immune and cancer cells.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Diminazene/analogs & derivatives , Enzyme Activators/therapeutic use , Renin-Angiotensin System/drug effects , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Diminazene/adverse effects , Diminazene/therapeutic use , Enzyme Activation , Enzyme Activators/adverse effects , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/physiopathology
3.
Clin Exp Pharmacol Physiol ; 47(7): 1120-1133, 2020 07.
Article in English | MEDLINE | ID: mdl-32083749

ABSTRACT

B-type natriuretic peptide (BNP) exhibits roles in natriuresis and diuresis, making it an ideal drug that may aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these have demonstrated beneficial outcomes. The current challenge for BNP research in acute HF lies in addressing a failure of concept and a reluctance to abandon an ineffective research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP, as well as better integration of basic and clinical science.


Subject(s)
Heart Failure/drug therapy , Natriuretic Peptide, Brain/pharmacology , Acute Disease , Humans , Natriuretic Peptide, Brain/therapeutic use
4.
Heart Lung Circ ; 28(5): 678-689, 2019 May.
Article in English | MEDLINE | ID: mdl-30318392

ABSTRACT

This is Part 2 of a two-part review summarising current knowledge on biomarkers of atherosclerosis. Part 1 addressed serological biomarkers. Here, in part 2 we address genetic and imaging markers, and other developments in predicting risk. Further improvements in risk stratification are expected with the addition of genetic risk scores. In addition to single nucleotide polymorphisms (SNPs), recent advances in epigenetics offer DNA methylation profiles, histone chemical modifications, and micro-RNAs as other promising indicators of atherosclerosis. Imaging biomarkers are better studied and already have a higher degree of clinical applicability in cardiovascular (CV) event prediction and detection of preclinical atherosclerosis. With new methodologies, such as proteomics and metabolomics, discoveries of new clinically applicable biomarkers are expected.


Subject(s)
Atherosclerosis , Biomarkers/blood , Diagnostic Imaging/methods , Genetic Markers , Atherosclerosis/blood , Atherosclerosis/diagnosis , Atherosclerosis/genetics , Humans
5.
Heart Lung Circ ; 28(5): 667-677, 2019 May.
Article in English | MEDLINE | ID: mdl-30468147

ABSTRACT

Atherosclerosis is a major contributor to morbidity and mortality worldwide. With therapeutic consequences in mind, several risk scores are being used to differentiate individuals with low, intermediate or high cardiovascular (CV) event risk. The most appropriate management of intermediate risk individuals is still not known, therefore, novel biomarkers are being sought to help re-stratify them as low or high risk. This narrative review is presented in two parts. Here, in Part 1, we summarise current knowledge on serum (serological) biomarkers of atherosclerosis. Among novel biomarkers, high sensitivity C-reactive protein (hsCRP) has emerged as the most promising in chronic situations, others need further clinical studies. However, it seems that a combination of serum biomarkers offers more to risk stratification than either biomarker alone. In Part 2, we address genetic and imaging markers of atherosclerosis, as well as other developments relevant to risk prediction.


Subject(s)
Atherosclerosis/blood , C-Reactive Protein/metabolism , Biomarkers/blood , Humans , Inflammation/blood , Risk Factors
6.
J Mol Cell Cardiol ; 124: 12-25, 2018 11.
Article in English | MEDLINE | ID: mdl-30273558

ABSTRACT

Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.


Subject(s)
Action Potentials , Angiotensin II/metabolism , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Atrial Remodeling , Angiotensin II/pharmacology , Animals , Biomarkers , Blood Pressure , Echocardiography , Electrocardiography , Immunohistochemistry , Male , Membrane Potentials/drug effects , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
7.
Clin Exp Pharmacol Physiol ; 45(4): 319-325, 2018 04.
Article in English | MEDLINE | ID: mdl-29112769

ABSTRACT

Several epidemiological studies reported an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and atherosclerotic cardiovascular disease (ASCVD). However, therapeutic interventions targeted at raising HDL-cholesterol failed to improve cardiovascular outcomes, suggesting that HDL components distinct from cholesterol may account for the anti-atherothrombotic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P) and the acute phase protein serum amyloid A (SAA) have been identified as integral constituents of HDL particles. Evidence suggests that S1P and SAA levels within HDL particles may be affected by inflammation and oxidative stress, which are coexisting processes underlying ASCVD. Because SAA, an inflammation-related marker, and S1P, an anti-atherothrombotic marker, have relatively clear opposite characteristics among the HDL-associated proteins, the approach of assessing the two markers simultaneously may provide new insights in clinical practice (S1P/SAA Index). This review focuses on evidence in support of the concept that the S1P/SAA Index may affect the HDL atheroprotective properties and may, therefore represent a potential target for therapeutic interventions.


Subject(s)
Cholesterol, HDL/blood , Cholesterol, HDL/chemistry , Heart Diseases/blood , Lysophospholipids/chemistry , Serum Amyloid A Protein/chemistry , Sphingosine/analogs & derivatives , Heart Diseases/complications , Humans , Sphingosine/chemistry
8.
Int J Food Sci Nutr ; 69(5): 513-523, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29063824

ABSTRACT

Obesity is a complex condition classically characterised by excessive body fat accumulation and represents one of the most important public health problems worldwide. Although several epidemiological studies have shown that elevated BMI is associated with higher morbidity, and with increased rate of death from all causes and from cardiovascular disease, accumulating evidence suggests that being overweight or obese may be protective (the so-called obesity paradox), at least in chronic diseases. These observations, not only question the validity of the BMI system, but also raise the intriguing question of whether we should redefine what the normal range of BMI is in individuals suffering from a chronic disease. In the present article, we review the available information on the association between elevated BMI and increased morbidity and mortality including obesity-related paradoxes, explore key aspects of the role and limitations of BMI as a measure of increased adiposity and outline potential solutions to address the current controversies regarding the impact of obesity on human health.


Subject(s)
Body Mass Index , Obesity/diagnosis , Body Composition , Humans , Risk Factors , Survival Analysis
9.
J Mol Cell Cardiol ; 82: 125-35, 2015 May.
Article in English | MEDLINE | ID: mdl-25754673

ABSTRACT

Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes.


Subject(s)
Parasympathetic Nervous System/physiopathology , Sinoatrial Node/innervation , Acetylcholine/pharmacology , Action Potentials/drug effects , Animals , Carbachol/pharmacology , Cardiotonic Agents/pharmacology , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Disease Models, Animal , Heart/drug effects , Heart/physiopathology , Insulin/administration & dosage , Insulin/pharmacology , Mice , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , RGS Proteins/antagonists & inhibitors , RGS Proteins/metabolism , Sinoatrial Node/drug effects
10.
J Cell Mol Med ; 19(7): 1729-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25864579

ABSTRACT

The sphingosine-1-phosphate (S1P) receptor modulator, fingolimod (FTY720), has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular (AV) conduction block have been reported in some patients after the first dose. The underlying mechanism of this AV node conduction blockade is still not well-understood. In this study, we hypothesize that expression of this particular arrhythmia might be related to a direct effect of FTY720 on AV node rather than a parasympathetic mimetic action. We, therefore, investigated the effect of FTY720 on AV nodal, using in vitro rat model preparation, under both basal as well as ischaemia/reperfusion conditions. We first look at the expression pattern of S1P receptors on the AV node using real-time PCR. Although all three S1P receptor isoforms were expressed in AVN tissues, S1P1 receptor isoform expression level was higher than S1P2 and S1P3. The effect of 25 nM FTY720 on cycle length (CL) was subsequently studied via extracellular potentials recordings. FTY720 caused a mild to moderate prolongation in CL by an average 9% in AVN (n = 10, P < 0.05) preparations. We also show that FTY720 attenuated both ischaemia and reperfusion induced AVN rhythmic disturbance. To our knowledge, these remarkable findings have not been previously reported in the literature, and stress the importance for extensive monitoring period in certain cases, especially in patients taking concurrently AV node blocker agents.


Subject(s)
Atrioventricular Node/drug effects , Fingolimod Hydrochloride/pharmacology , Lysophospholipids/pharmacology , Sphingosine/analogs & derivatives , Animals , Atrioventricular Node/physiopathology , Dissection , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, Lysosphingolipid/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Sphingosine/pharmacology
11.
J Physiol ; 593(5): 1127-46, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25641115

ABSTRACT

Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.


Subject(s)
Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Sinoatrial Node/metabolism , Action Potentials , Animals , Cells, Cultured , Collagen/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Receptors, Atrial Natriuretic Factor/metabolism , Sinoatrial Node/physiopathology
12.
Can J Physiol Pharmacol ; 93(6): 399-403, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25881664

ABSTRACT

The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.


Subject(s)
Heart Failure/physiopathology , Kidney/physiopathology , Natriuretic Peptide, Brain/metabolism , Animals , Heart Failure/metabolism , Humans , Kidney/metabolism , Natriuresis/physiology , Natriuretic Peptides/metabolism , Signal Transduction/physiology
13.
Clin Exp Pharmacol Physiol ; 42(9): 881-887, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25969125

ABSTRACT

The B-type natriuretic peptide (BNP) may favour natriuresis and diuresis, making it an ideal drug to aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these has resulted in a better outcome. The current challenge for BNP research in acute HF lies in a failure of concept and reluctance to abandon a demonstrably ineffectual research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP as well as a better integration of basic and clinical science.

14.
Curr Opin Lipidol ; 24(4): 351-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23652570

ABSTRACT

PURPOSE OF REVIEW: The absolute level of HDL cholesterol (HDL-C) may not be the only criterion contributing to their antiatherothrombotic effects. This review focuses on evidence in support of the concept that HDL-bound sphingosine-1-phosphate (S1P) plays a role in different HDL atheroprotective properties and may represent a potential target for therapeutic interventions. RECENT FINDINGS: Recent large randomized clinical trials testing the hypothesis of raising HDL-C with niacin and dalcetrapib in statin-treated patients failed to improve cardiovascular outcomes. Emerging evidence suggests that many of the cardioprotective functions of HDL, such as vasodilation, angiogenesis and endothelial barrier function, protection against ischemia/reperfusion injury, and inhibition of atherosclerosis, may be attributable to its S1P cargo. HDL-associated S1P may represent a future therapeutic target. SUMMARY: HDL functionality is affected by its composition and there is evidence to suggest S1P plays a role in some of HDL's functions and atheroprotective properties.


Subject(s)
Cholesterol, HDL/physiology , Coronary Artery Disease/blood , Lysophospholipids/physiology , Sphingosine/analogs & derivatives , Animals , Atherosclerosis/blood , Atherosclerosis/drug therapy , Atherosclerosis/physiopathology , Cardiotonic Agents/therapeutic use , Coronary Artery Disease/drug therapy , Drug Therapy, Combination , Humans , Indoles/therapeutic use , Niacin/therapeutic use , Randomized Controlled Trials as Topic , Sphingosine/physiology , Treatment Outcome
15.
Crit Rev Clin Lab Sci ; 50(3): 79-89, 2013.
Article in English | MEDLINE | ID: mdl-23885725

ABSTRACT

The mechanisms by which statins are beneficial are incompletely understood. While the lowering of low-density lipoprotein concentration is associated with regression of atherosclerosis, the observed benefit of statin therapy begins within months after its initiation, making regression an unlikely cause. Although LDL-C lowering is the main mechanism by which statin therapy reduces cardiovascular events, evidence suggests that at least some of the beneficial actions of statins may be mediated by their pleiotropic effects. Thus, statins may modulate the function of cardiovascular cells and key signalling proteins, including small G-proteins, to ultimately exert their pleiotropic effects. Sphingosine-1-phosphate (S1P) is a naturally occurring bioactive lysophospholipid that regulates diverse physiological functions in a variety of different organ systems. Within the cardiovascular system, S1P mediates cardioprotection following ischemia/reperfusion injury, anti-inflammatory response, improvement of endothelial function, increased mobilization and differentiation of endothelial progenitor cells, inhibition of oxidation, and anti-atherogenic and anti-thrombotic actions. Early evidence suggests that the pleiotropic effects of statins may be related to an increase in S1P signalling. This review focuses on S1P signalling as the potential mechanism underlying the pleiotropic effects of statins. An improved understanding of this mechanism may be vital for establishing the clinical relevance of statins and their importance in the treatment and prevention of coronary artery disease. Key points Several studies have demonstrated a benefit from lowering serum LDL-C with statins in patients with and without clinical evidence of CAD. These may be mediated by the pleiotropic effects of statins-the mechanisms of which are incompletely understood. Early evidence suggests that statins may increase S1P signalling pathways through upregulation of the expression of S1P receptors and an increase in plasma levels of S1P to ultimately exert their pleiotropic effects. Future clinical trials and basic science research aimed at the underlying mechanisms of the pleiotropic effects of statins should enlighten us to their relative clinical relevance and importance.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lysophospholipids/metabolism , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Animals , Cells, Cultured , Coronary Artery Disease/drug therapy , Coronary Artery Disease/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Sphingosine/metabolism
19.
Biomed Pharmacother ; 143: 112197, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34560541

ABSTRACT

The sphingolipids ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (Sph), and sphingosine-1-phosphate (S1P)) are key signaling molecules that regulate many patho-biological processes. During the last decade, they have gained increasing attention since they may participate in important and numerous retinal processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Cer for instance has emerged as a key mediator of inflammation and death of neuronal and retinal pigment epithelium cells in experimental models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. S1P may have opposite biological actions, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Furthermore, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), have been shown to preserve neuronal viability and retinal function. Collectively, the expanding role for these sphingolipids in the modulation of vital processes in retina cell types and in their dysregulation in retinal degenerations makes them attractive therapeutic targets.


Subject(s)
Retina/metabolism , Retinal Diseases/metabolism , Sphingolipids/metabolism , Animals , Ceramides/metabolism , Fingolimod Hydrochloride/therapeutic use , Humans , Lysophospholipids/metabolism , Molecular Targeted Therapy , Photoreceptor Cells, Vertebrate/metabolism , Retina/drug effects , Retina/pathology , Retinal Diseases/drug therapy , Retinal Diseases/pathology , Retinal Ganglion Cells/metabolism , Retinal Pigment Epithelium/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Sphingosine-1-Phosphate Receptors/drug effects , Sphingosine-1-Phosphate Receptors/metabolism
20.
Respir Med ; 178: 106314, 2021 03.
Article in English | MEDLINE | ID: mdl-33550150

ABSTRACT

BACKGROUND AND OBJECTIVES: Reports comparing the characteristics of patients and their clinical outcomes between community-acquired (CA) and hospital-acquired (HA) COVID-19 have not yet been reported in the literature. We aimed to characterise and compare clinical, biochemical and haematological features, in addition to clinical outcomes, between these patients. METHODS: This multi-centre, retrospective, observational study enrolled 488 SARS-CoV-2 positive patients - 339 with CA infection and 149 with HA infection. All patients were admitted to a hospital within the University Hospitals of Morecambe Bay NHS Foundation Trust between March 7th and May 18th, 2020. RESULTS: The CA cohort comprised of a significantly younger population, median age 75 years, versus 80 years in the HA cohort (P = 0·0002). Significantly less patients in the HA group experienced fever (P = 0·03) and breathlessness (P < 0·0001). Furthermore, significantly more patients had anaemia and hypoalbuminaemia in the HA group, compared to the CA group (P < 0·0001 for both). Hypertension and a lower median BMI were also significantly more pronounced in the HA cohort (P = 0·03 and P = 0·0001, respectively). The mortality rate was not significantly different between the two cohorts (34% in the CA group and 32% in the HA group, P = 0·64). However, the CA group required significantly greater ICU care (10% versus 3% in the HA group, P = 0·009). CONCLUSION: Hospital-acquired and community-acquired COVID-19 display similar rates of mortality despite significant differences in baseline characteristics of the respective patient populations. Delineation of community- and hospital-acquired COVID-19 in future studies on COVID-19 may allow for more accurate interpretation of results.


Subject(s)
COVID-19/complications , COVID-19/mortality , Community-Acquired Infections/complications , Community-Acquired Infections/mortality , Cross Infection/complications , Cross Infection/mortality , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Community-Acquired Infections/diagnosis , Cross Infection/diagnosis , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Survival Rate , Symptom Assessment , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL