Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 27(11): 4536-4549, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35902629

ABSTRACT

Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.


Subject(s)
Depressive Disorder, Major , Ketamine , MicroRNAs , Mice , Animals , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , MicroRNAs/metabolism , Biomarkers , Epigenesis, Genetic , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Ketamine/pharmacology , Ketamine/therapeutic use
2.
Genomics ; 114(2): 110280, 2022 03.
Article in English | MEDLINE | ID: mdl-35124177

ABSTRACT

PURPOSE: The trabecular meshwork (TM) is situated in the most frontal part of the eye and is thought to play an important role in the regulation of the eye pressure. However, this tissue is rather difficult to harvest for research. The purpose of this study is therefore to integrate the existing gene expression data of the healthy TM to increase sample size and identify its signature genes and pathways. This provides a robust reference for the study of molecular disease processes and supports the selection of candidate target genes for new treatments. METHODS: A systematic search identified microarray data of healthy TM tissue. After quality control, datasets of low quality and deviating samples were excluded. Remaining individuals were jointly normalized and integrated into one database. The average gene expression of each tested gene over all individuals was calculated. The 25% genes with the highest average expression were identified as the most active genes in the healthy TM and used as input for pathway and network analysis. Additionally, ubiquitous pathways and genes were identified and excluded from the results. Lastly, we identified genes which are likely to be TM-specific. RESULTS: The gene expression data of 44 individuals, obtained from 18 datasets, were jointly normalized. Ubiquitous genes (n = 688) and ubiquitous pathways (n = 73) were identified and excluded. Following, 1882 genes and 211 pathways were identified as the signature genes and pathways of the healthy TM. Pathway analysis revealed multiple molecular processes of which some were already known to be active in the TM, for example extracellular matrix and elastic fiber formation. Forty-six candidate TM-specific genes were identified. These consist mainly of pseudogenes or novel transcripts of which the function is unknown. CONCLUSIONS: In this comprehensive meta-analysis we identified non-ubiquitous genes and pathways that form the signature of the functioning of the healthy TM. Additionally, 46 candidate TM-specific genes were identified. This method can also be used for other tissues that are difficult to obtain for study.


Subject(s)
Extracellular Matrix , Trabecular Meshwork , Extracellular Matrix/genetics , Humans , Microarray Analysis , Trabecular Meshwork/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982313

ABSTRACT

Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/prevention & control , Quality of Life , Psychotherapy , Biomarkers , Phenotype
4.
Int J Mol Sci ; 22(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34639084

ABSTRACT

Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world's population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80-90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.


Subject(s)
Epigenesis, Genetic , Epigenomics , Gene-Environment Interaction , Genetic Predisposition to Disease , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/pathology , Humans , Risk Factors
5.
Nucleic Acids Res ; 46(D1): D661-D667, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29136241

ABSTRACT

WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.


Subject(s)
Databases, Chemical , Metabolomics , Animals , Data Curation , Data Mining , Databases, Chemical/standards , Databases, Genetic , Humans , Metabolic Networks and Pathways , Quality Control , Search Engine , Software
6.
Genomics ; 109(5-6): 408-418, 2017 10.
Article in English | MEDLINE | ID: mdl-28684091

ABSTRACT

ANGPTL8 (Angiopoietin-like protein 8) is a newly identified hormone emerging as a novel drug target for treatment of diabetes mellitus and dyslipidemia due to its unique metabolic nature. With increasing number of studies targeting the regulation of ANGPTL8, integration of their findings becomes indispensable. This study has been conducted with the aim to collect, analyze, integrate and visualize the available knowledge in the literature about ANGPTL8 and its regulation. We utilized this knowledge to construct a regulatory pathway of ANGPTL8 which is available at WikiPathways, an open source pathways database. It allows us to visualize ANGPTL8's regulation with respect to other genes/proteins in different pathways helping us to understand the complex interplay of novel hormones/genes/proteins in metabolic disorders. To the best of our knowledge, this is the first attempt to present an integrated pathway view of ANGPTL8's regulation and its associated pathways and is important resource for future omics-based studies.


Subject(s)
Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Glucose/metabolism , Lipid Metabolism , Peptide Hormones/genetics , Peptide Hormones/metabolism , Angiopoietin-Like Protein 8 , Animals , Cell Proliferation , Cells, Cultured , Databases, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Signal Transduction , Web Browser
7.
BMC Bioinformatics ; 16: 267, 2015 Aug 23.
Article in English | MEDLINE | ID: mdl-26298294

ABSTRACT

BACKGROUND: Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. RESULTS: We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. CONCLUSIONS: PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.


Subject(s)
Biomarkers, Tumor/genetics , Computer Graphics , Gene Expression Regulation, Neoplastic/drug effects , Genomics/methods , Neoplasms/genetics , Signal Transduction/drug effects , Software , Animals , Automation , Cyclophosphamide , Gene Expression Profiling , Gene Regulatory Networks , Mice , Neoplasms/drug therapy , Workflow
8.
BMC Genomics ; 16: 482, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26122086

ABSTRACT

BACKGROUND: Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. RESULTS: To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. CONCLUSIONS: The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.


Subject(s)
User-Computer Interface , Computational Biology/standards , Internet , Oligonucleotide Array Sequence Analysis , Quality Control
9.
Hum Reprod ; 30(10): 2303-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26202924

ABSTRACT

STUDY QUESTION: Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? SUMMARY ANSWER: Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes involved in apoptosis, protein degradation, metabolism and cell-cycle regulation. WHAT IS KNOWN ALREADY: Several human studies have shown an effect of culture medium on embryo development, pregnancy outcome and birthweight. However, the underlying mechanisms in human embryos are still unknown. In animal models of human development, it has been demonstrated that culture of preimplantation embryos in vitro affects gene expression. In humans, it has been found that culture medium affects gene expression of cryopreserved embryos that, after thawing, were cultured in two different media for 2 more days. STUDY DESIGN, SIZE, DURATION: In a multicenter trial, women were randomly assigned to two culture medium groups [G5 and human tubal fluid (HTF)]. Data on embryonic development were collected for all embryos. In one center, embryos originating from two pronuclei (2PN) zygotes that were not selected for transfer or cryopreservation on Day 2 or 3 because of lower morphological quality, were cultured until Day 6 and used in this study, if couples consented. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ten blastocysts each from the G5 and HTF study groups, matched for fertilization method, maternal age and blastocyst quality, were selected and their mRNA was isolated and amplified. Embryos were examined individually for genome-wide gene expression using Agilent microarrays and PathVisio was used to identify the pathways that showed a culture medium-dependent activity. MAIN RESULTS AND THE ROLE OF CHANCE: Expression of 951 genes differed significantly (P < 0.01) between the G5 and HTF groups. Eighteen pathways, involved in apoptosis, metabolism, protein processing and cell-cycle regulation, showed a significant overrepresentation of differentially expressed genes. The DNA replication, G1 to S cell-cycle control and oxidative phosphorylation pathways were up-regulated in the G5 group compared with the HTF group. This is in agreement with the morphological assessment of the 1527 embryos (originating from 2PN zygotes), which showed that embryos consisted of more cells on Day 2 (3.73 ± 1.30 versus 3.40 ± 1.35, P < 0.001) and Day 3 (7.00 ± 2.41 versus 5.84 ± 2.36, P < 0.001) in the G5 group when compared with the HTF group. Furthermore, the implantation rate was significantly higher in the G5 group compared with the HTF group (26.7% versus 14.7%, P = 0.002) after transfer on the second or the third day after fertilization. LIMITATIONS, REASONS FOR CAUTION: Despite careful matching of the embryos, it cannot be excluded that the differences observed between the study groups are caused by factors that we did not investigate. Extrapolation of these results to embryos used for transfer demands caution as in the present study embryos that were not selected for either embryo transfer or cryopreservation have been used for the culture experiment until Day 6. WIDER IMPLICATIONS OF THE FINDINGS: This study shows that gene expression in human preimplantation embryos is altered by the culture medium used during IVF treatment and provides insight into the biological pathways that are affected. Whether these changes in gene expression have any long-term effects on children born after IVF remains unknown. However, it is possible that early adaptations of the preimplantation embryo to its environment persist during fetal and post-natal development. STUDY FUNDING/COMPETING INTERESTS: No funding and no competing interests declared. TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Blastocyst/cytology , Culture Media/chemistry , Embryo Culture Techniques , Fertilization in Vitro/methods , Transcriptome , Adult , Animals , Apoptosis , Cell Cycle , Cryopreservation , Embryo Implantation , Embryo Transfer/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Oligonucleotide Array Sequence Analysis , Pregnancy , Pregnancy Outcome
10.
Nucleic Acids Res ; 41(Web Server issue): W71-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23620278

ABSTRACT

Quality control (QC) is crucial for any scientific method producing data. Applying adequate QC introduces new challenges in the genomics field where large amounts of data are produced with complex technologies. For DNA microarrays, specific algorithms for QC and pre-processing including normalization have been developed by the scientific community, especially for expression chips of the Affymetrix platform. Many of these have been implemented in the statistical scripting language R and are available from the Bioconductor repository. However, application is hampered by lack of integrative tools that can be used by users of any experience level. To fill this gap, we developed a freely available tool for QC and pre-processing of Affymetrix gene expression results, extending, integrating and harmonizing functionality of Bioconductor packages. The tool can be easily accessed through a wizard-like web portal at http://www.arrayanalysis.org or downloaded for local use in R. The portal provides extensive documentation, including user guides, interpretation help with real output illustrations and detailed technical documentation. It assists newcomers to the field in performing state-of-the-art QC and pre-processing while offering data analysts an integral open-source package. Providing the scientific community with this easily accessible tool will allow improving data quality and reuse and adoption of standards.


Subject(s)
Gene Expression Profiling/standards , Oligonucleotide Array Sequence Analysis/standards , Software , Gene Expression Profiling/methods , Internet , Oligonucleotide Array Sequence Analysis/methods , Quality Control , User-Computer Interface
11.
Sci Rep ; 14(1): 14666, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918466

ABSTRACT

Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.


Subject(s)
Histone Deacetylase 6 , Protein Interaction Maps , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Humans , Nervous System Diseases/metabolism , Nervous System Diseases/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Phosphorylation , Acetylation , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology
12.
Stem Cell Res Ther ; 15(1): 165, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867306

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have emerged as living biodrugs for myocardial repair and regeneration. Recent randomized controlled trials (RCTs) have reported that MSC-based therapy is safe and effective in heart failure patients; however, its dose-response relationship has yet to be established. We aimed to determine the optimal MSC dose for treating HF patients with reduced ejection fraction (EF) (HFrEF). METHODS: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook guidelines were followed. Four databases and registries, i.e., PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other websites, were searched for RCTs. Eleven RCTs with 1098 participants (treatment group, n = 606; control group, n = 492) were selected based on our inclusion/exclusion criteria. Two independent assessors extracted the data and performed quality assessments. The data from all eligible studies were plotted for death, major adverse cardiac events (MACE), left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and 6-minute walk distance (6-MWD) as safety, efficacy, and performance parameters. For dose-escalation assessment, studies were categorized as low-dose (< 100 million cells) or high-dose (≥ 100 million cells). RESULTS: MSC-based treatment is safe across low and high doses, with nonsignificant effects. However, low-dose treatment had a more significant protective effect than high-dose treatment. Subgroup analysis revealed the superiority of low-dose treatment in improving LVEF by 3.01% (95% CI; 0.65-5.38%) compared with high-dose treatment (-0.48%; 95% CI; -2.14-1.18). MSC treatment significantly improved the 6-MWD by 26.74 m (95% CI; 3.74-49.74 m) in the low-dose treatment group and by 36.73 m (95% CI; 6.74-66.72 m) in the high-dose treatment group. The exclusion of studies using ADRCs resulted in better safety and a significant improvement in LVEF from low- and high-dose MSC treatment. CONCLUSION: Low-dose MSC treatment was safe and superior to high-dose treatment in restoring efficacy and functional outcomes in heart failure patients, and further analysis in a larger patient group is warranted.


Subject(s)
Heart Failure , Mesenchymal Stem Cell Transplantation , Randomized Controlled Trials as Topic , Stroke Volume , Humans , Heart Failure/therapy , Heart Failure/drug therapy , Mesenchymal Stem Cell Transplantation/methods , Stroke Volume/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Ventricular Function, Left/drug effects
13.
BMC Genomics ; 13: 42, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22276688

ABSTRACT

BACKGROUND: The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. RESULTS: We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. CONCLUSION: T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.


Subject(s)
DNA Methylation , DNA/metabolism , Genome-Wide Association Study/methods , Oligonucleotide Array Sequence Analysis/standards , Binding Sites , Chromatin Immunoprecipitation , CpG Islands , Databases, Factual , Genome-Wide Association Study/instrumentation , ROC Curve
14.
Article in English | MEDLINE | ID: mdl-35682057

ABSTRACT

Trauma exposure is one of the most important and prevalent risk factors for mental and physical ill-health. Prolonged or excessive stress exposure increases the risk of a wide variety of mental and physical symptoms, resulting in a condition known as post-traumatic stress disorder (PTSD). The diagnosis might be challenging due to the complex pathophysiology and co-existence with other mental disorders. The prime factor for PTSD development is exposure to a stressor, which variably, along with peritraumatic conditions, affects disease progression and severity. Additionally, many factors are thought to influence the response to the stressor, and hence reshape the natural history and course of the disease. With sufficient knowledge about the disease, preventive and intervenient methods can be implemented to improve the quality of life of the patients and to limit both the medical and economic burden of the disease. This literature review provides a highlight of up-to-date literature on traumatic stress, with a focus on causes or triggers of stress, factors that influence response to stress, disease burden, and the application of the social-ecological public health model of disease prevention. In addition, it addresses therapeutic aspects, ethnic differences in traumatic stress, and future perspectives, including potential biomarkers.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Public Health , Quality of Life , Risk Factors , Social Environment , Stress Disorders, Post-Traumatic/etiology
15.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33896623

ABSTRACT

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Subject(s)
Depressive Disorder, Major , Anhedonia , Animals , Anxiety , Female , Male , Mice , Prefrontal Cortex , Sex Characteristics
16.
Neurobiol Aging ; 102: 178-187, 2021 06.
Article in English | MEDLINE | ID: mdl-33773368

ABSTRACT

Sphingolipids (SLs) are bioactive lipids involved in various important physiological functions. The SL pathway has been shown to be affected in several brain-related disorders, including Alzheimer's disease (AD). Recent evidence suggests that epigenetic dysregulation plays an important role in the pathogenesis of AD as well. Here, we use an integrative approach to better understand the relationship between epigenetic and transcriptomic processes in regulating SL function in the middle temporal gyrus of AD patients. Transcriptomic analysis of 252 SL-related genes, selected based on GO term annotations, from 46 AD patients and 32 healthy age-matched controls, revealed 103 differentially expressed SL-related genes in AD patients. Additionally, methylomic analysis of the same subjects revealed parallel hydroxymethylation changes in PTGIS, GBA, and ITGB2 in AD. Subsequent gene regulatory network-based analysis identified 3 candidate genes, that is, SELPLG, SPHK1 and CAV1 whose alteration holds the potential to revert the gene expression program from a diseased towards a healthy state. Together, this epigenomic and transcriptomic approach highlights the importance of SL-related genes in AD, and may provide novel biomarkers and therapeutic alternatives to traditionally investigated biological pathways in AD.


Subject(s)
Alzheimer Disease/genetics , Epigenesis, Genetic/genetics , Gene Regulatory Networks/genetics , Genetic Association Studies , Sphingolipids/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Methylation , Sphingolipids/metabolism , Sphingolipids/physiology , Temporal Lobe/metabolism , Transcriptome/genetics
17.
Invest Ophthalmol Vis Sci ; 61(4): 24, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32305042

ABSTRACT

Purpose: To identify processes that contribute to corticosteroid-induced ocular hypertension and candidate target genes for treatment. Methods: A systematic search identified five human microarray datasets investigating the effect of dexamethasone versus a control medium on trabecular meshwork (TM) tissue. After thorough quality control, samples of low quality were removed, and the datasets were integrated. Additionally, a bovine RNA-sequencing dataset allowed to investigate differences in gene expression profiling between cows with and without corticosteroid-induced ocular hypertension (responders vs. nonresponders). The obtained datasets were used as input for parallel pathway analyses. Significantly changed pathways were clustered into functional categories and the results were further investigated. A network visualizing the differences between the responders and nonresponders was created. Results: Seven functional pathway clusters were found to be significantly changed in TM cells exposed to dexamethasone versus a control medium and in TM cells of responders versus nonresponders: collagen, extracellular matrix, adhesion, WNT-signaling, inflammation, adipogenesis, and glucose metabolism. In addition, cell cycle and senescence were only significantly changed in responders versus nonresponders. The network of the differential gene expression between responders and nonresponders shows many connections between the identified processes via shared genes. Conclusions: Nine functional pathway clusters synthesize the molecular response to dexamethasone exposure in TM cells and are likely to be involved in the pathogenesis of corticosteroid-induced ocular hypertension.


Subject(s)
Cell Cycle Proteins/genetics , Dexamethasone/pharmacology , Extracellular Matrix Proteins/genetics , Gene Expression Regulation/physiology , Glucocorticoids/pharmacology , Ocular Hypertension/chemically induced , Trabecular Meshwork/drug effects , Animals , Cattle , Cells, Cultured , Datasets as Topic , Gene Expression Profiling , Humans , Ocular Hypertension/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Trabecular Meshwork/metabolism
18.
Acta Ophthalmol ; 98(1): 48-57, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31197946

ABSTRACT

PURPOSE: Performing bioinformatics analyses using trabecular meshwork (TM) gene expression data in order to further elucidate the molecular pathogenesis of primary open-angle glaucoma (POAG), and to identify candidate target genes. METHODS: A systematic search in Gene Expression Omnibus and ArrayExpress was conducted, and quality control and preprocessing of the data was performed with ArrayAnalysis.org. Molecular pathway overrepresentation analysis was performed with PathVisio using pathway content from three pathway databases: WikiPathways, KEGG and Reactome. In addition, Gene Ontology (GO) analysis was performed on the gene expression data. The significantly changed pathways were clustered into functional categories which were combined into a network of connected genes. RESULTS: Ninety-two significantly changed pathways were clustered into five functional categories: extracellular matrix (ECM), inflammation, complement activation, senescence and Rho GTPase signalling. ECM included pathways involved in collagen, actin and cell-matrix interactions. Inflammation included pathways entailing NF-κB and arachidonic acid. The network analysis showed that several genes overlap between the inflammation cluster on the one hand, and the ECM, complement activation and senescence clusters on the other hand. GO analysis, identified additional clusters, related to development and corticosteroids. CONCLUSION: This study provides an overview of the processes involved in the molecular pathogenesis of POAG in the TM. The results show good face validity and confirm findings from histological, biochemical, genome-wide association and transcriptomics studies. The identification of known points of action for drugs, such as Rho GTPase, arachidonic acid, NF-κB, prostaglandins and corticosteroid clusters, supports the value of this approach to identify potential drug targets.


Subject(s)
Collagen/genetics , Computational Biology/methods , Extracellular Matrix/genetics , Gene Expression Regulation , Genome-Wide Association Study , Glaucoma, Open-Angle/genetics , Trabecular Meshwork/metabolism , Actins/biosynthesis , Actins/genetics , Collagen/biosynthesis , DNA/genetics , Extracellular Matrix/metabolism , Glaucoma, Open-Angle/metabolism , Humans
19.
Cartilage ; 11(2): 203-220, 2020 04.
Article in English | MEDLINE | ID: mdl-29629573

ABSTRACT

OBJECTIVE: Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN: We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS: Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS: The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.


Subject(s)
Annulus Fibrosus/metabolism , Intervertebral Disc/cytology , Nucleus Pulposus/metabolism , Cell Line , Chondrocytes/metabolism , Gene Expression Profiling , Genetic Markers/genetics , Humans , Phenotype
20.
Front Genet ; 10: 59, 2019.
Article in English | MEDLINE | ID: mdl-30847002

ABSTRACT

Pathway and network approaches are valuable tools in analysis and interpretation of large complex omics data. Even in the field of rare diseases, like Rett syndrome, omics data are available, and the maximum use of such data requires sophisticated tools for comprehensive analysis and visualization of the results. Pathway analysis with differential gene expression data has proven to be extremely successful in identifying affected processes in disease conditions. In this type of analysis, pathways from different databases like WikiPathways and Reactome are used as separate, independent entities. Here, we show for the first time how these pathway models can be used and integrated into one large network using the WikiPathways RDF containing all human WikiPathways and Reactome pathways, to perform network analysis on transcriptomics data. This network was imported into the network analysis tool Cytoscape to perform active submodule analysis. Using a publicly available Rett syndrome gene expression dataset from frontal and temporal cortex, classical enrichment analysis, including pathway and Gene Ontology analysis, revealed mainly immune response, neuron specific and extracellular matrix processes. Our active module analysis provided a valuable extension of the analysis prominently showing the regulatory mechanism of MECP2, especially on DNA maintenance, cell cycle, transcription, and translation. In conclusion, using pathway models for classical enrichment and more advanced network analysis enables a more comprehensive analysis of gene expression data and provides novel results.

SELECTION OF CITATIONS
SEARCH DETAIL