Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Am J Hum Genet ; 108(3): 446-457, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33600773

ABSTRACT

The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.


Subject(s)
Actinin/genetics , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Body Temperature/genetics , Codon, Nonsense/genetics , Evolution, Molecular , Humans , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Selection, Genetic/genetics
2.
Exp Physiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875105

ABSTRACT

A significant increase in circulating cell-free DNA (cfDNA) occurs with physical exercise, which depends on the type of exertion and the duration. The aims of this study were as follows: (1) to investigate the time course of cfDNA and conventional markers of muscle damage from immediately after to 96 h after muscle-damaging exercise; and (2) to investigate the relationship between cfDNA and indicators of primary (low-frequency fatigue and maximal voluntary isometric contraction) and secondary (creatine kinase and delayed-onset muscle soreness) muscle damage in young healthy males. Fourteen participants (age, 22 ± 2 years; weight, 84.4 ± 11.2 kg; height, 184.0 ± 7.4 cm) performed 50 intermittent drop jumps at 20 s intervals. We measured cfDNA and creatine kinase concentrations, maximal voluntary isometric contraction torque, low-frequency fatigue and delayed-onset muscle soreness before and at several time points up to 96 h after exercise. Plasma cfDNA levels increased from immediately postexercise until 72 h postexercise (P < 0.01). Elevation of postexercise cfDNA was correlated with both more pronounced low-frequency fatigue (r = -0.52, P = 3.4 × 10-11) and delayed-onset muscle soreness (r = 0.32, P = 0.00019). Levels of cfDNA change in response to severe primary and secondary muscle damage after exercise. Levels of cfDNA exhibit a stronger correlation with variables related to primary muscle damage than to secondary muscle damage, suggesting that cfDNA is a more sensitive marker of acute loss of muscle function than of secondary inflammation or damaged muscle fibres.

3.
Eur J Appl Physiol ; 124(4): 1297-1309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38015284

ABSTRACT

PURPOSE: This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men. METHODS: Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions. RESULTS: The plasma cfDNA levels were increased post-exercise (from 1.4 ± 0.258 to 1.91 ± 0.278 ng/ml (P < 0.01) on a log10 scale), without significant differences between the groups. However, older individuals showed a slight decrease in the baseline cfDNA values, from 1.39 ± 0.176 to 1.29 ± 0.085 ng/ml on a log10 scale, after 3 weeks (P = 0.043). Importantly, the elevation of the post-exercise cfDNA values was correlated with an increase in LFF in both groups. Three weeks of SIT induced an improvement in the recovery of LFF (main session effect, P = 0.0029); however, only the young group showed an increase in aerobic capacity (VO2max) (from 40.8 ± 6.74 to 43.0 ± 5.80 ml/kg/min, P = 0.0039). CONCLUSION: Three weeks of SIT diminished the baseline cfDNA values in the old group, together with an improvement in the recovery of LFF. However, VO2max was increased only in the young group.


Subject(s)
Cell-Free Nucleic Acids , High-Intensity Interval Training , Male , Humans , Aged , Young Adult , Adult , Middle Aged , Oxygen Consumption/physiology , Adaptation, Physiological/physiology , Exercise Tolerance
4.
Sensors (Basel) ; 24(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38610488

ABSTRACT

Near-infrared spectroscopy (NIRS) during repeated limb occlusions is a noninvasive tool for assessing muscle oxidative capacity. However, the method's reliability and validity remain under investigation. This study aimed to determine the reliability of the NIRS-derived mitochondrial power of the musculus vastus lateralis and its correlation with whole-body (cycling) aerobic power (V̇O2 peak). Eleven healthy active men (28 ± 10 y) twice (2 days apart) underwent repeated arterial occlusions to induce changes in muscle oxygen delivery after 15 s of electrical muscle stimulation. The muscle oxygen consumption (mV̇O2) recovery time and rate (k) constants were calculated from the NIRS O2Hb signal. We assessed the reliability (coefficient of variation and intraclass coefficient of correlation [ICC]) and equivalency (t-test) between visits. The results showed high reproducibility for the mV̇O2 recovery time constant (ICC = 0.859) and moderate reproducibility for the k value (ICC = 0.674), with no significant differences between visits (p > 0.05). NIRS-derived k did not correlate with the V̇O2 peak relative to body mass (r = 0.441, p = 0.17) or the absolute V̇O2 peak (r = 0.366, p = 0.26). In conclusion, NIRS provides a reproducible estimate of muscle mitochondrial power, which, however, was not correlated with whole-body aerobic capacity in the current study, suggesting that even if somewhat overlapping, not the same set of factors underpin these distinct indices of aerobic capacity at the different (peripheral and whole-body systemic) levels.


Subject(s)
Quadriceps Muscle , Spectroscopy, Near-Infrared , Male , Humans , Reproducibility of Results , Bicycling , Electric Stimulation
5.
Br J Nutr ; 130(9): 1500-1509, 2023 11 14.
Article in English | MEDLINE | ID: mdl-36866742

ABSTRACT

Fasting is related to glucose intolerance and insulin resistance, but it is unknown whether the duration of fasting influences these factors. We explored whether prolonged fasting increases norepinephrine and ketone concentrations and decreases core temperature to a greater extent than short-term fasting; if so, this should lead to improved glucose tolerance. Forty-three healthy young adult males were randomly assigned to undergo a 2-d fast, 6-d fast or the usual diet. Changes in rectal temperature (TR), ketone and catecholamine concentrations, glucose tolerance and insulin release in response to an oral glucose tolerance test were assessed. Both fasting trials increased ketone concentration, and the effect was larger after the 6-d fast (P < 0·05). TR and epinephrine concentration increased only after the 2-d fast (P < 0·05). Both fasting trials increased the glucose area under the curve (AUC) (P < 0·05), but the AUC remained higher than the baseline value after participants returned to their usual diet in the 2-d fast group (P < 0·05). Neither fasting had an immediate effect on the insulin AUC, although it increased after return to their usual diet in the 6-d fast group (P < 0·05). These data suggest that the 2-d fast elicited residual impaired glucose tolerance, which may be linked to greater perceived stress during short-term fasting, as shown by the epinephrine response and change in core temperature. By contrast, prolonged fasting seemed to evoke an adaptive residual mechanism that is related to improved insulin release and maintained glucose tolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Male , Young Adult , Humans , Insulin , Blood Glucose , Glucose , Insulin Resistance/physiology , Intermittent Fasting , Epinephrine , Ketones , Fasting/physiology
6.
Scand J Med Sci Sports ; 33(9): 1621-1637, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37218443

ABSTRACT

PURPOSE: The purpose of this study was to determine if aging would lead to greater decline in neuromuscular function during a fatiguing task under severe whole-body hyperthermia conditions. METHODS: Twelve young (aged 19-21 years) and 11 older (aged 65-80 years) males were enrolled in the study, which comprised a randomized control trial under a thermoneutral condition at an ambient temperature of 23°C (CON) and an experimental trial with passive lower body heating in 43°C water (HWI-43°C). Changes in neuromuscular function and fatigability, and physical performance-influencing factors such as psychological, thermoregulatory, neuroendocrine, and immune responses to whole-body hyperthermia were measured. RESULTS: A slower increase in rectal temperature, and a lower heart rate, thermal sensation, and sweating rate were observed in older males than young males in response to HWI-43°C trial (p < 0.05). Nevertheless, prolactin increased more in response to hyperthermia in young males, while interleukin-6 and cortisol levels increased more in older males (p < 0.05). Peripheral dopamine levels decreased in older males and increased in young males in response to hyperthermia (p < 0.05). Surprisingly, older males demonstrated greater neuromuscular fatigability resistance and faster maximal voluntary contraction (MVC) torque recovery after a 2-min sustained isometric MVC task under thermoneutral and severe hyperthermic conditions (p < 0.05). CONCLUSION: Neuromuscular performance during fatigue-provoking sustained isometric exercise under severe whole-body hyperthermia conditions appears to decline in both age groups, but a lower relative decline in torque production for older males may relate to lower psychological and thermophysiological strain along with a diminished dopamine response and prolactin release.


Subject(s)
Hyperthermia, Induced , Prolactin , Male , Humans , Aged , Dopamine , Exercise/physiology , Isometric Contraction/physiology , Fatigue , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Torque , Electromyography
7.
Medicina (Kaunas) ; 59(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37763784

ABSTRACT

Background and Objectives: To date, understanding age-related changes in cognitive processes during heat exposure still needs to be better-understood. Thus, the main aim of the current study was to evaluate the effects of whole-body hyperthermia (WBH), i.e., a ≈ 2.5 °C increase in rectal temperature (Tre) from overnight-fast baseline value, on cognitive functioning in old and young men and to explore factors, such as stress and thermophysiological strain, that could influence such changes. Materials and Methods: Ten young (19-21 years of age) and nine old (61-80 years of age) healthy men underwent an experimental trial with passive lower-body heating in hot water immersion (HWI) at 43 °C (HWI-43 °C) until Tre reached 39 °C in old adults and 39.5 °C in young adults. Cognitive performance and cortisol concentration were assessed before and after HWI, and the physiological strain index (PSI) was assessed during HWI-43 °C. Results: PSI was lower and cortisol concentration was greater after HWI-43 °C in the old group compared with the young group (p < 0.05). Surprisingly, hyperthermia improved cognitive flexibility only in old adults, whereas short-term and visual recognition memories were maintained in both age groups. Conclusions: A ≈ 2.5 °C increase in rectal temperature can improve executive function in old adults, and this increase parallels the increased cortisol concentration and the lower thermophysiological strain under severe WBH conditions.

8.
Int J Hyperthermia ; 39(1): 134-143, 2022.
Article in English | MEDLINE | ID: mdl-35000494

ABSTRACT

Background: Noxious acute cold stimuli cause cold shock via the sympathetic nervous system. However, no studies have investigated respiratory "heat shock" in response to noxious acute heat stimuli (≥ 42 °C).Methods: In the present study, we examined whether short-duration whole-body immersion (for 5 min) in noxious hot water (45 °C) is a sufficient stimulus to induce a respiratory acute shock response.Results and conclusion: Our results indicate that short-duration whole-body immersion in noxious 45 °C water produces a significantly greater body temperature, heart rate, and perceptual and respiratory strain than immersion in innocuous warm 37 °C water (p < .05). The initial first minute of hot water immersion (HWI) at 45 °C (vs. immersion at 37 °C) caused a cardiorespiratory shock response, which manifested as acute hyperventilation, and increased ventilatory tidal volume, respiratory exchange ratio, and heart rate (p < .05). Adjustment to this initial respiratory heat shock response within the first minute of immersion was observed as compared with remaining HWI time (1-5 min). Intriguingly, the time-course kinetics of breathing frequency, oxygen uptake, and carbon dioxide washout did not differ between whole-body immersion at 37 °C and immersion at 45 °C, but were higher than in control thermoneutral conditions of an empty bath (p < .05). This may be because of events initiated not only by the water temperature but also by the change in the hydrostatic pressure acting upon the body when immersed in the water bath.


Subject(s)
Body Temperature , Cold Temperature , Heart Rate , Heat-Shock Response , Humans , Water
9.
Cryobiology ; 109: 62-71, 2022 12.
Article in English | MEDLINE | ID: mdl-36150503

ABSTRACT

Cold exposure-induced secretion of stress hormones activates cold-defense responses and mobilizes substrates for increased energy demands to fuel thermogenesis. However, it is unclear whether acute cold exposure-induced stress hormone response kinetics affect circulating lipid parameter kinetics. Therefore, we aimed to investigate the 2-day kinetics of stress hormones (i.e., cortisol, epinephrine, and norepinephrine) and the lipid profile (i.e., total cholesterol [TC], high-density lipoprotein [HDL] cholesterol, low-density lipoprotein [LDL] cholesterol, and triglycerides) in response to whole-body long- (intermittent 170 min; 170-CWI) or short-duration (10 min; 10-CWI) cold-water immersion (CWI; 14 °C water) in 17 healthy, young, adult men. Both CWI trials induced a marked release of the stress hormones, epinephrine, and norepinephrine, with higher concentrations detected after 170-CWI (p < 0.05) and a disrupted diurnal peak of cortisol lasting for a few hours. 170-CWI increased triglyceride levels from immediately after until 2 h after CWI, thereafter the concentration decreased at 4 h, 6 h, 1 day and 2 days after CWI (p < 0.05). Furthermore, the HDL-cholesterol level increased immediately after and at 6 h after 170-CWI (p < 0.05), while TC and LDL-cholesterol levels were not altered within 2 days. Lipid parameters were not affected within the 2 days after 10-CWI. Although both CWIs decreased deep body temperature and increased stress hormone levels for a few hours, only long-duration CWI induced changes in the circulating lipid profile within 2 days after CWI. This should be considered when discussing therapeutic protocols to improve circulating lipid profiles and ameliorate diseases associated with such profiles.


Subject(s)
Hydrocortisone , Immersion , Adult , Male , Humans , Cryopreservation/methods , Cold Temperature , Water , Norepinephrine , Epinephrine , Lipids
10.
J Appl Biomech ; 38(6): 412-423, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36395763

ABSTRACT

To describe the possible effects of chronic specific exercise training, the present study compared the anthropometric variables, muscle-tendon unit (MTU) architecture, passive stiffness, and force production capacity between a group of competitive cyclists and runners. Twenty-seven competitive male cyclists (n = 16) and runners (n = 11) participated. B-mode ultrasound evaluation of the vastus lateralis muscle and patellar tendon as well as passive stiffness of the knee extensors MTU were assessed. The athletes then performed a test of knee extensor maximal voluntary isometric contractions. Cyclists displayed greater thigh girths, vastus lateralis pennation angle and muscle thickness, patellar tendon cross-sectional area, and MTU passive stiffness than runners (P < .05). Knee extensor force production capacity also differed significantly, with cyclists showing greater values compared with runners (P < .05). Overall, the direct comparison of these 2 populations revealed specific differences in the MTU, conceivably related to the chronic requirements imposed through the training for the different disciplines.


Subject(s)
Muscle, Skeletal , Tendons , Humans , Male , Muscle, Skeletal/diagnostic imaging , Isometric Contraction , Knee Joint , Quadriceps Muscle
11.
Cytokine ; 143: 155510, 2021 07.
Article in English | MEDLINE | ID: mdl-33820701

ABSTRACT

A poor outcome of whole-body hypothermia often results from a late complication, rather than from acute effects of hypothermia. A low body (cell) temperature or the increase in the concentrations of the stress hormones cortisol, epinephrine, and norepinephrine in response to acute cold stress have been proposed as potent proinflammatory cytokine suppressant. In the current study, we tested the hypothesis that the recovery of body temperature from a whole-body intermittent cold-water immersion (CWI, at 13-14 °C for a total 170 min) is associated with a delayed response of proinflammatory cytokines in young healthy men. Our results revealed a delay in the increase in the proinflammatory interleukin 6 and interleukin 1ß cytokines after the CWI, which paralleled the changes in cortisol, epinephrine, norepinephrine, and body temperature. CWI decreased tumor necrosis factor α (TNF-α) immediately and 1 h after the CWI. Although TNF-α had recovered to the pre-immersion level at 2 h after CWI, its natural circadian cycle kinetics was disrupted until 12 h after the CWI. Furthermore, we showed that CWI strongly modified the white blood cell counts, with changes reaching a peak between 1 and 2 h after the CWI.


Subject(s)
Body Temperature/physiology , Cold-Shock Response/physiology , Cytokines/biosynthesis , Inflammation Mediators/blood , Cytokines/blood , Hormones/blood , Humans , Leukocytes/metabolism , Time Factors , Young Adult
12.
Int J Hyperthermia ; 38(1): 696-707, 2021.
Article in English | MEDLINE | ID: mdl-33910456

ABSTRACT

Background: One of the most challenging environmental extremes is immersion in cold/icy water, and consequent common assumption is that even a brief exposure to cold can lead to cold-related illnesses. The increase in the concentrations of the stress hormones cortisol, epinephrine (Epi), and norepinephrine (NE) in response to acute cold stress are thought to suppress the release of proinflammatory cytokines. No previous study has explored the residual consequences of whole-body short-term cold-water immersion (CWI; 14 °C for 10 min) on the immune response in healthy non-acclimated young adult men (aged 20-30 years).Materials and methods: In the current study, we tested the hypothesis that short-term acute whole-body CWI would induce high blood levels of cortisol, NE, and Epi, which in turn would increase circulating leukocyte numbers and delay the production of proinflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6). Results: Short-term whole-body CWI produced a stressful physiological reaction, as manifested by hyperventilation and increased muscle shivering, metabolic heat production, and heart rate. CWI also induced the marked release of the stress hormones Epi, NE, and cortisol. The change in IL-6 concentration after CWI was delayed and TNF-α production was decreased, but IL-1ß was not affected within 48 h after CWI. A delayed increase in neutrophil percentage and decrease in lymphocyte percentage occurred after CWI.Conclusion: These findings suggest that, even though CWI caused changes in stress and immune markers, the participants showed no predisposition to symptoms of the common cold within 48 h after CWI.


Subject(s)
Common Cold , Adult , Biomarkers , Cold Temperature , Cytokines , Humans , Immersion , Leukocyte Count , Male , Water , Young Adult
14.
Eur J Appl Physiol ; 120(10): 2259-2271, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32776256

ABSTRACT

PURPOSE: Aging is associated with progressive loss of active muscle mass and consequent decreases in resting metabolic rate and body temperature, and slowing of nerve conduction velocities and muscle contractility. These effectors compromise the ability of the elderly to maintain an upright posture during sudden balance perturbation, increase the risk of falls, and lead to self-imposed reduction in physical activity. Short-term superficial acute heating can modulate the neural drive transmission to exercising muscles without any marked change in deep-muscle temperature. METHODS: To determine whether the short-term (5 min) application of local passive knee-surface heating (next-to-skin temperature, ~ 44 °C) in healthy older subjects of both sexes (64-74 years; eight men/eight women) enhances reflex excitability, we compared the voluntarily and electrically induced ankle muscle torque production and contractile properties with those of healthy younger subjects of both sexes (21-35 years, 10 men/10 women). RESULTS: The application of local heating (vs. control) increased the maximal Hoffman reflex (Hmax), the maximal volitional wave (Vsup) amplitude, and the Hmax/Mmax amplitude ratio, and decreased Vsup latency only in older adults. In the older adults (vs. younger adults), the application of local heating (vs. control trial) was accompanied by a significant increase in maximal voluntary peak torque, rate of torque development, and isokinetic peak torque of plantar flexion/dorsiflexion muscle contraction. CONCLUSION: The spinal and supraspinal reflex excitability of older adults increased during local knee-heating application. The improved motor drive transmission observed in older adults was accompanied by increased voluntarily induced torque production of the ankle muscles during isometric/isokinetic contractions.


Subject(s)
Aging/physiology , Hot Temperature , Isometric Contraction , Reflex , Spinal Cord/physiology , Adult , Aged , Aged, 80 and over , Ankle/growth & development , Ankle/physiology , Female , Humans , Knee/growth & development , Knee/physiology , Male , Middle Aged , Muscle, Skeletal/growth & development , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neural Conduction , Spinal Cord/growth & development , Torque
15.
Medicina (Kaunas) ; 56(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784754

ABSTRACT

Background and Objectives: The all-out mode of sprint interval training (SIT) has been shown to be an efficient method for improving sports performance, exercise capacity, and aerobic fitness. Although the benefits of SIT are well described, the mechanisms underlying the different degrees of response remain largely unexplored. We aimed to assess the effects of exertion on the responsiveness to SIT. Materials and Methods: The participants were 28 young untrained men (mean ± SD age 25.7 ± 6.03 years) who exhibited either a large or small increase in Wingate test average power in response to nine SIT sessions performed over three weeks. Each training session comprised four-six bouts of 30 s all-out cycling interspaced with 4 min of rest. Individual responses were assessed using heart rate (HR) during exercise for all nine sessions, as well as blood lactate concentration up to 1 h, and the decrement in maximal voluntary knee extension torque (MVC) up to 24 h after the first and last training sessions. Peak oxygen uptake (VO2peak) and maximum HR were measured before and after training during an incremental cycling test to exhaustion. Results: Although all participants showed benefits of SIT such as increased VO2peak, the increase in anaerobic cycling power varied between participants. We identified 17 high responders and nine low responders, whose average power outputs were 0.80 ± 0.22 and 0.22 ± 0.19 W/kg, respectively. The HR achieved during any of the training sessions did not differ between high and low responders. The lactate kinetics did not differ between groups before and after the intervention. Training resulted in a more rapid recovery of MVC without any discernible differences between the high and low responders. Conclusion: The differences in the responses to SIT are not dependent on the exertion level during training.


Subject(s)
High-Intensity Interval Training/methods , Physical Exertion/physiology , Adaptation, Physiological/physiology , Adult , Athletic Performance/physiology , Humans , Male , Oxygen Consumption/physiology , Running/physiology
16.
Int J Hyperthermia ; 36(1): 65-74, 2019.
Article in English | MEDLINE | ID: mdl-30484343

ABSTRACT

Healthy aging is associated with a progressive decline in motor performance and thermoregulatory efficiency. Functional consequences of severe whole-body hyperthermia on neurophysiological functions in healthy aged men have not been investigated. To determine whether severe whole-body hyperthermia (increase in rectal temperature of about 2.5 °C) induced by lower-body heating in older men (64-80 years, n = 9) would suppress excitability of reflexes, voluntarily and electrically induced ankle plantar flexor contractile properties were compared with those in young men (19-21 years, n = 11). Though no aging effect on hyperthermia-induced reflex amplitudes was observed, a decrease in maximal H-reflex and V-wave latencies was found to be greater in older than in young men. In older men, lower-body heating was accompanied by a significant increase in twitch and tetani test torque in parallel with a greater decrease in muscle contraction time. There was no temperature-depended aging effect on the voluntary activation and maximal voluntary torque production. Despite delayed and weakened thermoregulation and age-related decline in neuromuscular function, motor performance in whole-body severe hyperthermia is apparently preserved in healthy aging.


Subject(s)
Fever/physiopathology , Psychomotor Performance/physiology , Adult , Aged , Aged, 80 and over , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult
17.
Int J Hyperthermia ; 36(1): 660-665, 2019.
Article in English | MEDLINE | ID: mdl-31317816

ABSTRACT

Background: Although acute thermal stress appears to be one of the most effective stressors that increase the intra- and extracellular concentrations of heat shock protein 72 (Hsp72), 17ß-estradiol has been shown to inhibit heat-induced Hsp72 expression. Materials and Methods: To determine whether severe whole-body hyperthermia (increase in rectal temperature up to 39.5 °C) induced by lower-body heating is a sufficient stimulus to modulate hormonal (17ß-estradiol, progesterone, prolactin, epinephrine, and norepinephrine) and extracellular Hsp72 responses, we investigated young adult women (21 ± 1 yr). Results and Conclusions: In the present study, we show that a severe whole-body hyperthermia (increase in rectal temperature of approximately 2.6 °C and heart rate of approximately 80 bpm from baseline) was sufficient to increase 17ß-estradiol, progesterone, and prolactin and catecholamine norepinephrine concentration. Moreover, we show that the concentration of extracellular Hsp72 and catecholamine epinephrine were not affected by severe whole-body hyperthermia in young adult women. From the functional point of view, expression of ovarian hormones induced by passive heat stress may have therapeutic potential for young adult women in, for example, estrogen treatment and overall women's health.


Subject(s)
Epinephrine/blood , HSP72 Heat-Shock Proteins/blood , Hormones/blood , Hyperthermia, Induced , Norepinephrine/blood , Adult , Body Temperature , Female , Follicular Phase/blood , Heart Rate , Humans , Ovary , Thermosensing , Young Adult
18.
FASEB J ; 31(11): 4809-4820, 2017 11.
Article in English | MEDLINE | ID: mdl-28716970

ABSTRACT

Increased production of reactive oxygen/nitrogen species (ROS) and impaired cellular Ca2+ handling are implicated in the prolonged low-frequency force depression (PLFFD) observed in skeletal muscle after both metabolically and mechanically demanding exercise. Metabolically demanding high-intensity exercise can induce PLFFD accompanied by ROS-dependent fragmentation of the sarcoplasmic reticulum Ca2+ release channels, the ryanodine receptor 1s (RyR1s). We tested whether similar changes occur after mechanically demanding eccentric contractions. Human subjects performed 100 repeated drop jumps, which require eccentric knee extensor contractions upon landing. This exercise caused a major PLFFD, such that maximum voluntary and electrically evoked forces did not recover within 24 h. Drop jumps induced only minor signs of increased ROS, and RyR1 fragmentation was observed in only 3 of 7 elderly subjects. Also, isolated mouse muscle preparations exposed to drop-jump-mimicking eccentric contractions showed neither signs of increased ROS nor RyR1 fragmentation. Still, the free cytosolic [Ca2+] during tetanic contractions was decreased by ∼15% 1 h after contractions, which can explain the exaggerated force decrease at low-stimulation frequencies but not the major frequency-independent force depression. In conclusion, PLFFD caused by mechanically demanding eccentric contractions does not involve any major increase in ROS or RyR1 fragmentation.-Kamandulis, S., de Souza Leite, F., Hernandez, A., Katz, A., Brazaitis, M., Bruton, J. D., Venckunas, T., Masiulis, N., Mickeviciene, D., Eimantas, N., Subocius, A., Rassier, D. E., Skurvydas, A., Ivarsson, N., Westerblad, H. Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species.


Subject(s)
Calcium/metabolism , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Reactive Oxygen Species/metabolism , Adult , Animals , Humans , Male , Mice , Ryanodine Receptor Calcium Release Channel/metabolism
19.
Exp Brain Res ; 236(7): 2085-2096, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29754195

ABSTRACT

Healthy aging is associated with a marked decline in motor performance. The functional consequences of applying varying novel or unexpected motor stimuli during intermittent isometric prolonged (fatiguing) motor tasks for lower limb neuromuscular fatigability and steadiness, perception of effort, and blood markers of stress in healthy aged men compared with young men have not been investigated. The participants in this study were 15 young men (aged 22 ± 4 years) and 10 older men (aged 67 ± 6 years). They performed 100 intermittent isometric knee extensions under three experimental conditions involving intermittent isometric contraction tasks according to constant, predictable, and unpredictable torque target sequences. The variability in maximal voluntary contraction averaged 50%, and was 25, 50, and 75% for the three strategies. All included a 5-s contraction and 20-s rest. The main variables were measured before exercise, after 100 repetitions, and 1 h after exercise. In all experimental trials, the decreases in the maximal voluntary contraction and central activation ratio, and the increases in effort sensation and muscle temperature, were smaller in older men than in younger men. The coefficient of variation during the motor performance did not differ between age groups. However, in all three strategies, the dopamine concentration was significantly higher in older than in younger men. The prolactin concentration did not differ significantly between age groups or conditions, although its decrease during loading correlated negatively with the central activation ratio.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Adult , Aged , Analysis of Variance , Dopamine/blood , Electric Stimulation , Electromyography , Feedback, Sensory , Humans , Male , Middle Aged , Prolactin/blood , Torque , Young Adult
20.
Medicina (Kaunas) ; 54(3)2018 May 24.
Article in English | MEDLINE | ID: mdl-30344264

ABSTRACT

Background and objectives: Fatigue during physical activity occurs because of decreased neuromuscular function. The aim of this study was to evaluate the effect of three different strategies based on motor task performance on neuromuscular fatigue in healthy men and men with multiple sclerosis (MS). Materials and Methods: We studied age-matched (18⁻43 years of age) healthy men (n = 15) and men with MS (n = 9). The inclusion criteria for MS subjects were a Kurtzke Expanded Disability Status Score <4 and a Fatigue Severity Scale Score >5. Both groups performed one of three exercise trials (with at least a 1-week interval between them) of 100 intermittent isometric knee extensions with flexion of 60°. The three different experimental conditions (ECs) were intermittent isometric contraction tasks with constant, predictable, and unpredictable torque target sequences. The variation of maximal voluntary contraction contractions (MVCs) within the strategies was 25%, 50%, and 75%, with a set average of 50%. All of them had a 5 s contraction and a 20 s rest period. The variables were measured: before exercise, after 100 repetitions (100-Reps), and 1 h after exercise. Results: In all EC tasks, the central activation ratio values of healthy and MS subjects were significantly different; however, no significant differences were observed among the EC tasks. No significant differences were seen in electrically induced torque, MVC torque, muscle temperature, subjective sensation of effort, coefficient of variation, or constant and absolute error after 100-Reps and 1 h after exercise between the two groups and in all EC tasks. Conclusions: Men with MS experienced higher central motor fatigue than did healthy men, but this had no effect on the variability, accuracy, or force sensation of the movements performed.


Subject(s)
Exercise Tolerance/physiology , Motor Activity/physiology , Multiple Sclerosis/physiopathology , Muscle Fatigue/physiology , Task Performance and Analysis , Adolescent , Adult , Electric Stimulation , Humans , Isometric Contraction/physiology , Male , Movement/physiology , Torque , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL