ABSTRACT
Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster and a transmembrane macrophage activator independent of the mannose receptor. TADM induces Th1-type immune responses and suppresses Th2-type cytokines in acute and chronic allergic inflammation models inâ vivo. We, therefore, wanted to test whether TADM could also facilitate anti-tumour tissue responses similar to what has been observed for the immune checkpoint inhibitors, such as anti-PD-1 and anti-CTLA-4. A syngeneic mouse melanoma model was selected since metastatic melanoma has been successfully targeted by checkpoint inhibitors in the clinic. TADM inhibited the growth of B16 mouse melanoma tumours at levels comparable to an anti-PD-1 antibody. TADM-treated tumours encompassed significantly more apoptotic cells as measured by TUNEL staining, and interferon-gamma (IFN-γ) expression was increased in the spleens of TADM-treated mice compared to untreated controls. TADM-treated mice also demonstrated increased Ly6â C low monocytes and neutrophils in the spleens. However, TADM-treated tumours showed no discernible differences in infiltrating immune cells. TADM can alone suppress the growth of melanoma tumours. TADM likely activates M1 type macrophages, type N1 neutrophils, and CD8+ and Th1 T cells, suppressing the type 2 immune response milieu of melanoma tumour with a strong type 1 immune response.
ABSTRACT
We performed an X-ray crystallographic study of complexes of protein kinase PIM-1 with three inhibitors comprising an adenosine mimetic moiety, a linker, and a peptide-mimetic (d-Arg)6 fragment. Guided by the structural models, simplified chemical structures with a reduced number of polar groups and chiral centers were designed. The developed inhibitors retained low-nanomolar potency and possessed remarkable selectivity toward the PIM kinases. The new inhibitors were derivatized with biotin or fluorescent dye Cy5 and then applied for the detection of PIM kinases in biochemical solutions and in complex biological samples. The sandwich assay utilizing a PIM-2-selective detection antibody featured a low limit of quantification (44 pg of active recombinant PIM-2). Fluorescent probes were efficiently taken up by U2OS cells and showed a high extent of co-localization with PIM-1 fused with a fluorescent protein. Overall, the developed inhibitors and derivatives represent versatile chemical tools for studying PIM function in cellular systems in normal and disease physiology.
Subject(s)
Fluorescent Dyes , Molecular Imaging , Peptidomimetics , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Carbocyanines/chemistry , Carbocyanines/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolismABSTRACT
Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2ß), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2ß interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2ß interaction. A structural inspection revealed that ARC-3140, unlike CK2ß antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2ß interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2ß2 holoenzyme.
Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Casein Kinase II/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Catalytic Domain/drug effects , Crystallography, X-Ray , Halogenation , Humans , Molecular Docking Simulation , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolismABSTRACT
Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster comprising ß-1,2-linked mannobioses that in humans induces TNF in vitro and in vivo. The purpose of this study was to analyze whether uptake of acetylated glycoclusters of such ß-1,2-linked mannobioses by human macrophages is dependent on the mannose receptor (CD206) or if it is mediated by transmembrane activation. In mannose receptor blocking assays, monocyte-derived polarized macrophages were incubated with carbohydrate test-compounds and their binding to the mannose receptor was demonstrated as inhibition of FITC-Dextran binding. For 1H NMR spectroscopy, macrophages were incubated with TADM. The cells were collected at 6 and 24 h of incubation, centrifuged and washed twice with PBS. We found dose-dependent blocking of the mannose receptor in macrophage carbohydrate constructs containing free hydroxyl groups, but not by the trivalent acetylated glycocluster molecules. NMR spectroscopic analyses demonstrated that TADM was found in washed cellular pellets after 6-h co-culture, while after 24-h co-culture TADM was no more detectable, suggesting cleavage of the acetyl groups in vitro. The Type 1 immune response enhancing effects of TADM and other, stereochemically and structurally similar, trivalent acetylated glycoclusters may be due to transmembrane uptake of macrophages independent of the mannose receptor.
Subject(s)
Lectins, C-Type , Macrophages , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Lectins, C-Type/metabolism , Lectins, C-Type/chemistry , Macrophages/drug effects , Macrophages/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/chemistry , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , AcetylationABSTRACT
Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 that emitted red light with a long (microsecond-scale) decay time upon excitation of the probes with a pulse of near-UV light.
Subject(s)
Azoles/chemistry , Casein Kinase II/chemistry , Coloring Agents/chemistry , Organoselenium Compounds/chemistry , Peptides/chemistry , Azoles/radiation effects , Coloring Agents/radiation effects , Cyclic AMP-Dependent Protein Kinases/chemistry , Light , Organoselenium Compounds/radiation effects , Peptides/radiation effects , Proto-Oncogene Proteins c-pim-1/chemistryABSTRACT
Potent and selective: The unique nature of the ATP binding pocket structure of Pim family protein kinases (PKs) was used for the development of bisubstrate inhibitors and a fluorescent probe with sub-nanomolar affinity. Conjugates of arginine-rich peptides with two ATP mimetic scaffolds were synthesized and tested as inhibitors of Pim-1. Against a panel of 124 protein kinases, a novel ARC-PIM conjugate selectively inhibited PKs of the Pim family.
Subject(s)
Nanostructures/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Dose-Response Relationship, Drug , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Structure-Activity RelationshipABSTRACT
Two hundred isolates of Mycobacterium tuberculosis were evaluated for their susceptibility to a newly synthesised quinolone derivative, ER-2, compared with ciprofloxacin, ofloxacin, levofloxacin and moxifloxacin. ER-2 and moxifloxacin showed the greatest activity [MIC for 90% of strains tested (MIC(90))=0.5 microg/mL], although levofloxacin and ciprofloxacin showed good activity with an MIC(90) of 1 microg/mL. More importantly, ER-2 showed excellent activity against M. tuberculosis H37Rv both in the lungs and spleen of mice, indicating the potential therapeutic value of ER-2 against M. tuberculosis.