Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38935886

ABSTRACT

Pulmonary melioidosis is a severe tropical infection caused by Burkholderia pseudomallei and is associated with high mortality despite early antibiotic treatment. γδ T cells have been increasingly implicated as drivers of the host neutrophil response during bacterial pneumonia, but their role in pulmonary melioidosis is unknown. Here, we report that in patients with melioidosis, a lower peripheral blood γδ T cell concentration is associated with higher mortality even when adjusting for severity of illness. γδ T cells were also enriched in the lung and protected against mortality in a mouse model of pulmonary melioidosis. γδ T cell deficiency in infected mice induced an early recruitment of neutrophils to the lung, independent of bacterial burden. Subsequently, γδ T cell deficiency resulted in increased neutrophil-associated inflammation in the lung as well as impaired bacterial clearance. Additionally, γδ T cells influenced neutrophil function and subset diversity in the lung after infection. Our results indicate that γδ T cells serve a novel protective role in the lung during a severe bacterial pneumonia by regulating excessive neutrophil-associated inflammation.

2.
Article in English | MEDLINE | ID: mdl-33593842

ABSTRACT

Melioidosis is an often fatal infection in tropical regions caused by an environmental bacterium, Burkholderia pseudomallei Current recommended melioidosis treatment requires intravenous ß-lactam antibiotics such as ceftazidime (CAZ), meropenem (MEM) or amoxicillin-clavulanic acid (AMC) and oral trimethoprim-sulfamethoxazole. Emerging antibiotic resistance could lead to therapy failure and high mortality. We performed a prospective multicentre study in northeast Thailand during 2015-2018 to evaluate antibiotic susceptibility and characterize ß-lactam resistance in clinical B. pseudomallei isolates. Collection of 1,317 B. pseudomallei isolates from patients with primary and relapse infections were evaluated for susceptibility to CAZ, imipenem (IPM), MEM and AMC. ß-lactam resistant isolates were confirmed by broth microdilution method and characterized by whole genome sequence analysis, penA expression and ß-lactamase activity. The resistant phenotype was verified via penA mutagenesis. All primary isolates were IPM-susceptible but we observed two CAZ-resistant and one CAZ-intermediate resistant isolates, two MEM-less susceptible isolates, one AMC-resistant and two AMC-intermediate resistant isolates. One of 13 relapse isolates was resistant to both CAZ and AMC. Two isolates were MEM-less susceptible. Strains DR10212A (primary) and DR50054E (relapse) were multi-drug resistant. Genomic and mutagenesis analyses supplemented with gene expression and ß-lactamase analyses demonstrated that CAZ-resistant phenotype was caused by PenA variants: P167S (N=2) and penA amplification (N=1). Despite the high mortality rate in melioidosis, our study revealed that B. pseudomallei isolates had a low frequency of ß-lactam resistance caused by penA alterations. Clinical data suggest that resistant variants may emerge in patients during antibiotic therapy and be associated with poor response to treatment.

3.
Clin Infect Dis ; 72(5): 821-828, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32034914

ABSTRACT

BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1ß, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79-.92) vs 0.78 (.69-.87); P = .01]. In both the internal validation set (0.91 [0.84-0.97]) and the external validation set (0.81 [0.74-0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis.


Subject(s)
Cytokines/blood , Melioidosis , Adult , Biomarkers/blood , Burkholderia pseudomallei , Humans , Melioidosis/diagnosis , Melioidosis/mortality , Thailand
4.
Int J Mol Sci ; 20(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959732

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are emerging arboviruses that pose a worldwide threat to human health. Currently, neither vaccine nor antiviral treatment to control their infections is available. As the skin is a major viral entry site for arboviruses in the human host, we determined the global proteomic profile of CHIKV and ZIKV infections in human skin fibroblasts using Stable Isotope Labelling by Amino acids in Cell culture (SILAC)-based mass-spectrometry analysis. We show that the expression of the interferon-stimulated proteins MX1, IFIT1, IFIT3 and ISG15, as well as expression of defense response proteins DDX58, STAT1, OAS3, EIF2AK2 and SAMHD1 was significantly up-regulated in these cells upon infection with either virus. Exogenous expression of IFITs proteins markedly inhibited CHIKV and ZIKV replication which, accordingly, was restored following the abrogation of IFIT1 or IFIT3. Overexpression of SAMHD1 in cutaneous cells, or pretreatment of cells with the virus-like particles containing SAMHD1 restriction factor Vpx, resulted in a strong increase or inhibition, respectively, of both CHIKV and ZIKV replication. Moreover, silencing of SAMHD1 by specific SAMHD1-siRNA resulted in a marked decrease of viral RNA levels. Together, these results suggest that IFITs are involved in the restriction of replication of CHIKV and ZIKV and provide, as yet unreported, evidence for a proviral role of SAMHD1 in arbovirus infection of human skin cells.


Subject(s)
Chikungunya virus/physiology , Fibroblasts/metabolism , Fibroblasts/virology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Skin/pathology , Virus Replication/physiology , Zika Virus/physiology , Cell Line , Chikungunya Fever/virology , Humans , Molecular Sequence Annotation , Protein Interaction Maps , Proteolysis , Up-Regulation , Viral Regulatory and Accessory Proteins/metabolism , Zika Virus Infection/virology
5.
J Virol ; 89(17): 8880-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26085147

ABSTRACT

UNLABELLED: Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE: Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.


Subject(s)
Dendritic Cells/virology , Flaviviridae/physiology , Keratinocytes/virology , Virus Internalization , Virus Replication , Aedes/virology , Animals , Autophagy/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cells, Cultured , Chlorocebus aethiops , Cytokines/biosynthesis , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Dendritic Cells/immunology , Fibroblasts/virology , Flaviviridae/immunology , Flaviviridae Infections/immunology , Flaviviridae Infections/virology , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1 , Humans , Insect Vectors/virology , Interferon-Induced Helicase, IFIH1 , Interferon-beta/biosynthesis , Interferon-beta/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myxovirus Resistance Proteins/biosynthesis , Phagosomes/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA, Small Interfering , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Immunologic , Receptors, Virus/genetics , Receptors, Virus/metabolism , Skin/immunology , Skin/virology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/immunology , Ubiquitins/biosynthesis , Vero Cells , Axl Receptor Tyrosine Kinase
6.
PLoS One ; 18(11): e0292340, 2023.
Article in English | MEDLINE | ID: mdl-38011122

ABSTRACT

BACKGROUND: Cleistanthin A (CA), extracted from Phyllanthus taxodiifolius Beille, was previously reported as a potential V-ATPase inhibitor relevant to cancer cell survival. In the present study, ECDD-S16, a derivative of cleistanthin A, was investigated and found to interfere with pyroptosis induction via V-ATPase inhibition. OBJECTIVE: This study examined the ability of ECDD-S16 to inhibit endolysosome acidification leading to the attenuation of pyroptosis in Raw264.7 macrophages activated by both surface and endosomal TLR ligands. METHODS: To elucidate the activity of ECDD-S16 on pyroptosis-induced inflammation, Raw264.7 cells were pretreated with the compound before stimulation with surface and endosomal TLR ligands. The release of lactate dehydrogenase (LDH) was determined by LDH assay. Additionally, the production of cytokines and the expression of pyroptosis markers were examined by ELISA and immunoblotting. Moreover, molecular docking was performed to demonstrate the binding of ECDD-S16 to the vacuolar (V-)ATPase. RESULTS: This study showed that ECDD-S16 could inhibit pyroptosis in Raw264.7 cells activated with surface and endosomal TLR ligands. The attenuation of pyroptosis by ECDD-S16 was due to the impairment of endosome acidification, which also led to decreased Reactive Oxygen Species (ROS) production. Furthermore, molecular docking also showed the possibility of inhibiting endosome acidification by the binding of ECDD-S16 to the vacuolar (V-)ATPase in the region of V0. CONCLUSION: Our findings indicate the potential of ECDD-S16 for inhibiting pyroptosis and prove that vacuolar H+ ATPase is essential for pyroptosis induced by TLR ligands.


Subject(s)
Vacuolar Proton-Translocating ATPases , Humans , Vacuolar Proton-Translocating ATPases/metabolism , Pyroptosis , Molecular Docking Simulation , Inflammation
7.
Microbiol Spectr ; 10(5): e0348822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36194127

ABSTRACT

Melioidosis is a serious infectious disease caused by Burkholderia pseudomallei. This bacterium is able to survive and multiply inside the immune cells such as macrophages. It is well established that Toll-like receptors (TLRs), particularly surface TLRs such as TLR2, TLR4, and TLR5, play an essential role in defending against this bacterial infection. However, the involvement of endosomal TLRs in the infection has not been elucidated. In this study, we demonstrated that the number of intracellular bacteria is reduced in TLR9-depleted RAW264.7 cells infected with B. pseudomallei, suggesting that TLR9 is involved in intracellular bacterial killing in macrophages. As several reports have previously demonstrated that pyroptosis is essential for restricting intracellular bacterial killing, particularly in B. pseudomallei infection, we also observed an increased release of cytosolic enzyme lactate dehydrogenase (LDH) in TLR9-depleted cells infected with B. pseudomallei, suggesting TLR9 involvement in pyroptosis in this context. Consistently, the increases in caspase-11 and gasdermind D (GSDMD) activations, which are responsible for the LDH release, were also detected. Moreover, we demonstrated that the increases in pyroptosis and bacterial killing in B. pseudomallei-infected TLR9-depleted cells were due to the augmentation of the IFN-ß, one of the key cytokines known to regulate caspase-11. Altogether, this finding showed that TLR9 suppresses macrophage killing of B. pseudomallei by regulating pyroptosis. This information provides a novel mechanism of TLR9 in the regulation of intracellular bacterial killing by macrophages, which could potentially be leveraged for therapeutic intervention. IMPORTANCE Surface TLRs have been well established to play an essential role in Burkholderia pseudomallei infection. However, the role of endosomal TLRs has not been elucidated. In the present study, we demonstrated that TLR9 plays a crucial role by negatively regulating cytokine production, particularly IFN-ß, a vital cytokine to control pyroptosis via caspase-11 activation. By depletion of TLR9, the percentage of pyroptosis was significantly increased, leading to suppression of intracellular survival in B. pseudomallei-infected macrophages. These findings provide a new role of TLR9 in macrophages.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Mice , Animals , Burkholderia pseudomallei/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 2/metabolism , Pyroptosis , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 5/metabolism , Melioidosis/metabolism , Melioidosis/microbiology , Macrophages , Cell Line , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Cytokines/metabolism , Caspases/metabolism , Lactate Dehydrogenases/metabolism
8.
Microbiol Spectr ; 10(3): e0088622, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35695558

ABSTRACT

Vibrio parahaemolyticus is a Gram-negative, foodborne pathogenic bacterium that causes human gastroenteritis. This organism is ubiquitously present in the marine environment. Detection of V. parahaemolyticus in aquatic birds has been previously reported; however, the characterization of isolates of this bacterium recovered from these birds remains limited. The present study isolated and characterized V. parahaemolyticus from aquatic bird feces at the Bangpu Recreation Center (Samut Prakan province, Thailand) from 2016 to 2017, using multilocus sequence typing (MLST) and genome analysis. The results showed that V. parahaemolyticus was present in 34.9% (76/218) of the collected bird fecal samples. Among the ldh-positive V. parahaemolyticus isolates (n = 308), 1% (3/308) were positive for tdh, 1.3% (4/308) were positive for trh, and 0.3% (1/308) were positive for both tdh and trh. In turn, the MLST analysis revealed that 49 selected V. parahaemolyticus isolates resolved to 36 STs, 26 of which were novel (72.2%). Moreover, a total of 10 identified STs were identical to globally reported pathogenic strains (ST1309, ST1919, ST491, ST799, and ST2516) and environmental strains (ST1879, ST985, ST288, ST1925, and ST260). The genome analysis of isolates possessing tdh and/or trh (ST985, ST1923, ST1924, ST1929 and ST2516) demonstrated that the organization of the T3SS2α and T3SS2ß genes in bird fecal isolates were almost identical to those of human clinical strains posing public health concerns of pathogen dissemination in the recreational area. The results of this study suggest that aquatic birds are natural reservoirs of new strains with high genetic diversity and are alternative sources of potentially pathogenic V. parahaemolyticus in the marine environment. IMPORTANCE To our knowledge, infection of foodborne bacterium V. parahamolyticus occurs via the consumption of undercooked seafood contaminated with pathogenic strains. Aquatic bird is a neglectable source that can transmit V. parahaemolyticus along coastal areas. This study reported the detection of potentially pathogenic V. parahamolyticus harboring virulence genes from aquatic bird feces at the recreational center situated near the Gulf of Thailand. These strains shared identical genetic profile to the clinical isolates that previously reported in many countries. Furthermore, the strains from aquatic birds showed extremely high genetic diversity. Our research pointed out that the aquatic bird is possibly involved in the evolution of novel strains of V. parahaemolyticus and play a role in dissimilation of the potentially pathogenic strains across geographical distance.


Subject(s)
Vibrio Infections , Vibrio parahaemolyticus , Animals , Birds/genetics , Feces , Humans , Multilocus Sequence Typing , Thailand , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Vibrio parahaemolyticus/genetics , Virulence/genetics , Virulence Factors/genetics
9.
Trop Med Infect Dis ; 6(4)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34842856

ABSTRACT

Rural areas usually show a higher prevalence of rickettsial infection than urban areas. However, information on the rickettsial infection status in urban settings (e.g., built-up areas and city parks) is still limited, particularly in the Bangkok metropolitan area. In this study, we performed a molecular rickettsial survey of spleen samples of small mammals caught in public parks and built-up areas of Bangkok. Out of 198 samples, the Rattus rattus complex was found to be most prevalent. The amplification of rickettsial gltA fragment gene (338 bp) by nested PCR assay revealed positive results in four samples, yielding a low prevalence of infection of 2.02%. DNA sequencing results confirmed that three samples were matched with Rickettsia typhi, and one was identified as R. felis. It is noteworthy that this is the first report of the occurrence of R. felis DNA in rodents in Southeast Asia.

10.
J Virol Methods ; 291: 114119, 2021 05.
Article in English | MEDLINE | ID: mdl-33662412

ABSTRACT

Flavivirus reporters provide a robust tool for viral pathogenesis studies, anti-viral drug screening, disease diagnosis and functional antibody assays. In this study, we generated a luciferase-secreting, single-round reporter virus by replacing the capsid coding region in a DENV-2 genome with the secretory form of Lucia luciferase gene to produce infectious viral particles in a stable capsid-expressing mosquito cell line. Replication of the reporter virus in trans-complementing mosquito cells was sustained for up to two weeks. There were strong correlations between the extracellular luciferase activity and infectious reporter virus inocula upon infection of mosquito and mammalian cell lines with graded quantities of the reporter virus. A set of anti-E and anti-prM monoclonal antibodies affected the infectivity of reporter virus with similar dose-effect relationships as the parent virus. This simplified version of DENV-2 reporter provides a rapid and reliable method for the detection of neutralizing and infection-enhancing antibodies against dengue virus.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Animals , Antibodies, Blocking , Antibodies, Viral , Dengue/diagnosis , Dengue Virus/genetics , Luciferases/genetics
11.
Emerg Microbes Infect ; 10(1): 8-18, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33256556

ABSTRACT

Melioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, Burkholderia pseudomallei. The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls. Transcriptomic profiles of patients who did not survive to 28 days were compared with patients who survived and healthy controls, showing 65 genes were significantly up-regulated and 218 were down-regulated in non-survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. Down-regulated genes were hematopoietic cell lineage, adaptive immune system and lymphocyte activation pathways. RT-qPCR was performed for 28 genes in a validation set of 60 melioidosis patients and 20 healthy controls, confirming differential expression. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased significantly over 28 days (P < 0.05). These findings augment our understanding of this severe infection, showing expression levels of specific genes are potential biomarkers to predict melioidosis outcomes.


Subject(s)
Biomarkers/blood , Gene Expression Profiling/methods , Gene Regulatory Networks , Melioidosis/mortality , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Gene Expression Regulation , Humans , Male , Melioidosis/blood , Melioidosis/genetics , Middle Aged , Prospective Studies , Sequence Analysis, RNA , Survival Analysis
12.
Biochem Biophys Res Commun ; 398(4): 752-8, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20627090

ABSTRACT

Information on the immune response against H5N1 within the lung is lacking. Here we describe the sustained antiviral immune responses, as indicated by the expression of MxA protein and IFN-alpha mRNA, in autopsy lung tissue from an H5N1-infected patient. H5N1 infection of primary bronchial/tracheal epithelial cells and lung microvascular endothelial cells induced IP-10, and also up-regulated the retinoic acid-inducible gene-I (RIG-I). Down-regulation of RIG-I gene expression decreased IP-10 response. Co-culturing of H5N1-infected pulmonary cells with TNF-alpha led to synergistically enhanced production of IP-10. In the absence of viral infection, TNF-alpha and IFN-alpha also synergistically enhanced IP-10 response. Methylprednisolone showed only a partial inhibitory effect on this chemokine response. Our findings strongly suggest that both the H5N1 virus and the locally produced antiviral cytokines; IFN-alpha and TNF-alpha may have an important role in inducing IP-10 hyperresponse, leading to inflammatory damage in infected lung.


Subject(s)
Chemokine CXCL10/biosynthesis , Influenza A Virus, H5N1 Subtype , Influenza, Human/immunology , Lung/immunology , Lung/virology , Pneumonia, Viral/immunology , Cells, Cultured , Chemokine CXCL10/antagonists & inhibitors , DEAD Box Protein 58 , DEAD-box RNA Helicases/metabolism , GTP-Binding Proteins/biosynthesis , Humans , Interferon-alpha/biosynthesis , Interferon-alpha/pharmacology , Methylprednisolone/pharmacology , Myxovirus Resistance Proteins , Receptors, Immunologic , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
13.
Sci Rep ; 9(1): 13972, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562344

ABSTRACT

Melioidosis is a tropical infectious disease caused by Burkholderia pseudomallei that results in high mortality. Hemolysin co-regulated protein 1 (Hcp1) and O-polysaccharide (OPS) are vaccine candidates and potential diagnostic antigens. The correlation of classes/subclasses of antibodies against these antigens with clinical characteristics of melioidosis patients is unknown. Antibodies in plasma samples from melioidosis patients and healthy donors were quantified by ELISA and compared with clinical features. In melioidosis patients, Hcp1 induced high IgG levels. OPS induced high IgG and IgA levels. The area under receiver operating characteristic curve (AUROCC) to discriminate melioidosis cases from healthy donors was highest for anti-Hcp1 IgG (0.92) compared to anti-Hcp1 IgA or IgM. In contrast, AUROCC for anti-OPS for IgG (0.91) and IgA (0.92) were comparable. Anti-Hcp1 IgG1 and anti-OPS IgG2 had the greatest AUROCCs (0.87 and 0.95, respectively) compared to other IgG subclasses for each antigen. Survivors had significantly higher anti-Hcp1 IgG3 levels than non-survivors. Male melioidosis patients with diabetes had higher anti-OPS IgA levels than males without diabetes. Thus, diverse and specific antibody responses are associated with distinct clinical characteristics in melioidosis, confirming the diagnostic utility of these responses and providing new insights into immune mechanisms.


Subject(s)
Hemolysin Proteins/immunology , Melioidosis/immunology , Polysaccharides/immunology , Antibodies, Bacterial/blood , Burkholderia pseudomallei/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Melioidosis/blood
14.
Sci Rep ; 7(1): 3145, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600536

ABSTRACT

Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.


Subject(s)
Chikungunya virus/drug effects , Cholesterol/metabolism , Imipramine/pharmacology , Skin/virology , Androstenes/pharmacology , Biological Transport/drug effects , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/virology , Humans , Niemann-Pick Disease, Type C/pathology , Skin/cytology , Skin/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
15.
PLoS One ; 12(4): e0175294, 2017.
Article in English | MEDLINE | ID: mdl-28384252

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution that more fully captures the extensive genetic diversity of this species. Here, we describe the evaluation of over 650 isolates. Main spectral profiles (MSP) for 26 isolates of B. pseudomallei (N = 5) and other Burkholderia species (N = 21) were added to the Biotyper database. MALDI-TOF MS was then performed on 581 B. pseudomallei, 19 B. mallei, 6 B. thailandensis and 23 isolates representing a range of other bacterial species. B. pseudomallei originated from northeast and east Thailand (N = 524), Laos (N = 12), Cambodia (N = 14), Hong Kong (N = 4) and Australia (N = 27). All 581 B. pseudomallei were correctly identified, with 100% sensitivity and specificity. Accurate identification required a minimum inoculum of 5 x 107 CFU/ml, and identification could be performed on spiked blood cultures after 24 hours of incubation. Comparison between a dendrogram constructed from MALDI-TOF MS main spectrum profiles and a phylogenetic tree based on recA gene sequencing demonstrated that MALDI-TOF MS distinguished between B. pseudomallei and B. mallei, while the recA tree did not. MALDI-TOF MS is an accurate method for the identification of B. pseudomallei, and discriminates between this and other related Burkholderia species.


Subject(s)
Burkholderia pseudomallei/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Asia , Australia , Burkholderia pseudomallei/genetics , Culture Media , Genes, Bacterial , Latex Fixation Tests , Multilocus Sequence Typing , Phylogeny , Species Specificity
16.
Trans R Soc Trop Med Hyg ; 110(11): 670-672, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28115683

ABSTRACT

BACKGROUND: Identification of Burkholderia pseudomallei, the cause of melioidosis, using routine methods takes several days. Use of a monoclonal antibody-based immunofluorescent assay (IFA) on positive blood cultures may speed diagnosis. METHODS: We tested the diagnostic accuracy of the IFA on 545 blood cultures positive for Gram-negative organisms at Udon Thani Hospital, Thailand, between June 2015 and August 2016. RESULTS: Sensitivity of the IFA was 100% and specificity was 99.6%. The median decrease in time to pathogen identification between the IFA result and routine methods was 28 h (IQR 25-51), p<0.0001. CONCLUSIONS: The IFA accurately expedites the diagnosis of melioidosis.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Blood Culture , Burkholderia pseudomallei/isolation & purification , Fluorescent Antibody Technique, Direct , Humans , Melioidosis/diagnosis
17.
Infect Genet Evol ; 32: 401-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25847693

ABSTRACT

Arboviruses represent an emerging threat to human. They are transmitted to vertebrates by the bite of infected arthropods. Early transmission to vertebrates is initiated by skin puncture and deposition of virus in this organ. However, events at the bite site remain largely unknown. Here, we report that Chikungunya virus (CHIKV) and West Nile virus (WNV), despite belonging to distinct viral families, elicit a common antiviral signature in primary human dermal fibroblasts, attesting for the up regulation of interferon signaling pathways and leading to an increased expression of IFN-ß, interleukins and chemokines. Remarkably, CHIKV and WNV enhance IL-1ß expression and induce maturation of caspase-1, indicating the capacity of these pathogens to elicit activation of the inflammasome program in resident skin cells. CHIKV and WNV also induce the expression of the inflammasome sensor AIM2 in dermal fibroblasts, whereas inhibition of caspase-1 and AIM2 with siRNA interferes with both CHIKV- and WNV-induced IL-1ß production by these cells. Finally, inhibition of the inflammasome via caspase-1 silencing was found to enhance CHIKV replication in dermal fibroblasts. Together, these results indicate that the skin contributes to the pro-inflammatory and anti-viral microenvironment via the activation of the inflammasome in the early stages following infection with arboviruses.


Subject(s)
Fibroblasts/immunology , Fibroblasts/virology , Inflammasomes/immunology , Signal Transduction , Caspase 1/genetics , Caspase 1/metabolism , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Chikungunya virus/genetics , Chikungunya virus/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Silencing , Humans , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Interferons/genetics , Interferons/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Up-Regulation , Virus Replication , West Nile virus/genetics , West Nile virus/physiology
18.
Virology ; 476: 1-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25496825

ABSTRACT

Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses.


Subject(s)
Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/physiology , Keratinocytes/immunology , Keratinocytes/virology , Virus Replication , Aedes , Animals , Cells, Cultured , Chikungunya Fever/genetics , Chikungunya virus/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferons/genetics , Interferons/immunology , Virus Internalization
20.
Innate Immun ; 19(6): 655-62, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23529854

ABSTRACT

The fatal H5N1 infection has a high mortality rate among infected patients. The pathogenesis of H5N1 viral infection is associated with the ability of the virus to induce apoptotic cell death. However, the molecular mechanism of apoptosis induced by H5N1 remains unclear. In the present study we demonstrate that H5N1 virus is able to up-regulate the expression of gene associated with retinoid and interferon induced mortality-19 (GRIM-19) in human monocyte-derived macrophages (hMDMs). GRIM-19 has been identified as a novel gene with apoptotic effects in virus-infected cells. The percentage of apoptotic cells is significantly decreased in H5N1-infected GRIM-19 depleted hMDMs, which is also associated with a decrease of BH3-interacting domain death agonist cleavage and apoptosis-inducing factor (AIF) release to the cytosol. These results suggested the involvement of GRIM-19 in apoptosis induced by H5N1 virus. Furthermore, neutralizing-IFN-ß Ab is able to suppress GRIM-19 expression in H5N1-infected cells resulting in a decrease in apoptotic cell number, indicating that IFN-ß secreted by H5N1-infected hMDMs regulates GRIM-19 expression leading to apoptosis. Altogether, the results presented here provide additional insight on the regulatory mechanism of H5N1 viral-induced apoptotic cell death in hMDMs.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/immunology , Interferon-beta/metabolism , Macrophages/immunology , NADH, NADPH Oxidoreductases/metabolism , Antibodies, Blocking/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Inducing Factor/metabolism , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Interferon-beta/immunology , Macrophages/drug effects , Macrophages/virology , NADH, NADPH Oxidoreductases/genetics , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL