Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Clin Sci (Lond) ; 138(8): 537-554, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38577922

ABSTRACT

Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1ß were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.


Subject(s)
Alveolar Epithelial Cells , Influenza A Virus, H1N1 Subtype , Pulmonary Fibrosis , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/metabolism , Pulmonary Fibrosis/virology , Pulmonary Fibrosis/pathology , Male , Influenza, Human/virology , Influenza, Human/complications , Influenza, Human/pathology , Middle Aged , Female , Cells, Cultured , Aged , Cellular Senescence , Case-Control Studies , Cytokines/metabolism
2.
Am J Respir Cell Mol Biol ; 68(4): 366-380, 2023 04.
Article in English | MEDLINE | ID: mdl-36227799

ABSTRACT

Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.


Subject(s)
Idiopathic Pulmonary Fibrosis , Indoles , Macrophages , Indoles/pharmacology , Animals , Mice , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Interleukin-4/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/drug effects , Macrophages/metabolism
3.
Hepatology ; 75(2): 252-265, 2022 02.
Article in English | MEDLINE | ID: mdl-34387888

ABSTRACT

BACKGROUND AND AIMS: Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1ß derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS: To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1ß exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS: GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.


Subject(s)
Cholestasis/prevention & control , Gene Expression/drug effects , Isoxazoles/pharmacology , Parenteral Nutrition/adverse effects , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Animals , Bile Acids and Salts/blood , Cholestasis/etiology , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Interleukin-1beta/pharmacology , Intestinal Diseases/chemically induced , Intestinal Diseases/therapy , Isoxazoles/therapeutic use , Lipoproteins/genetics , Liver Diseases/etiology , Liver Diseases/pathology , Liver Diseases/prevention & control , Macrophage Activation/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Multidrug Resistance-Associated Protein 2/genetics , Multidrug Resistance-Associated Proteins/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects
4.
Hepatology ; 74(6): 3284-3300, 2021 12.
Article in English | MEDLINE | ID: mdl-34310734

ABSTRACT

BACKGROUND AND AIMS: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1ß), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC. APPROACH AND RESULTS: In a C57BL/6 PNAC mouse model (dextran sulfate sodium [DSS] pretreatment followed by 14 days of PN; DSS-PN), hepatic nuclear receptor subfamily 5, group A, member 2/LRH-1 mRNA, LRH-1 protein expression, and binding of LRH-1 at the Abcg5/8 and Cyp7a1 promoter was reduced. Interleukin-1 receptor-deficient mice (Il-1r-/- /DSS-PN) were protected from PNAC and had significantly increased hepatic mRNA and protein expression of LRH-1. NF-κB activation and binding to the LRH-1 promoter were increased in DSS-PN PNAC mice and normalized in Il-1r-/- /DSS-PN mice. Knockdown of NF-κB in IL-1ß-exposed HepG2 cells increased expression of LRH-1 and ABCG5. Treatment of HepG2 cells and primary mouse hepatocytes with an LRH-1 inverse agonist, ML179, significantly reduced mRNA expression of FXR targets ATP binding cassette subfamily C member 2/multidrug resistance associated protein 2 (ABCC2/MRP2), nuclear receptor subfamily 0, groupB, member 2/small heterodimer partner (NR0B2/SHP), and ATP binding cassette subfamily B member 11/bile salt export pump (ABCB11/BSEP). Co-incubation with phytosterols further reduced expression of these genes. Similar results were obtained by suppressing the LRH-1 targets ABCG5/8 by treatment with small interfering RNA, IL-1ß, or LXR antagonist GSK2033. Liquid chromatography-mass spectrometry and chromatin immunoprecipitation experiments in HepG2 cells showed that ATP binding cassette subfamily G member 5/8 (ABCG5/8) suppression by GSK2033 increased the accumulation of phytosterols and reduced binding of FXR to the SHP promoter. Finally, treatment with LRH-1 agonist, dilauroyl phosphatidylcholine (DLPC) protected DSS-PN mice from PNAC. CONCLUSIONS: This study suggests that NF-κB regulation of LRH-1 and downstream genes may affect phytosterol-mediated antagonism of FXR signaling in the pathogenesis of PNAC. LRH-1 could be a potential therapeutic target for PNAC.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , Cholestasis/etiology , Lipoproteins/metabolism , NF-kappa B/metabolism , Parenteral Nutrition/adverse effects , Phytosterols/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cholestasis/metabolism , Chromatin Immunoprecipitation , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Gene Knockdown Techniques , Hep G2 Cells , Humans , Mice , Mice, Inbred C57BL
5.
Am J Physiol Cell Physiol ; 320(1): C142-C151, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33175574

ABSTRACT

Treatment options for liver metastases (primarily colorectal cancer) are limited by high recurrence rates and persistent tumor progression. Surgical approaches to management of these metastases typically use heat energy including electrocautery, argon beam coagulation, thermal ablation of surgical margins for hemostasis, and preemptive thermal ablation to prevent bleeding or to effect tumor destruction. Based on high rates of local recurrence, these studies assess whether local effects of hepatic thermal injury (HTI) might contribute to poor outcomes by promoting a hepatic microenvironment favorable for tumor engraftment or progression due to induction of procancer cytokines and deleterious immune infiltrates at the site of thermal injury. To test this hypothesis, an immunocompetent mouse model was developed wherein HTI was combined with concomitant intrasplenic injection of cells from a well-characterized MC38 colon carcinoma cell line. In this model, HTI resulted in a significant increase in engraftment and progression of MC38 tumors at the site of thermal injury. Furthermore, there were local increases in expression of messenger ribonucleic acid (mRNA) for hypoxia-inducible factor-1α (HIF1α), arginase-1, and vascular endothelial growth factor α and activation changes in recruited macrophages at the HTI site but not in untreated liver tissue. Inhibition of HIF1α following HTI significantly reduced discreet hepatic tumor development (P = 0.03). Taken together, these findings demonstrate that HTI creates a favorable local environment that is associated with protumorigenic activation of macrophages and implantation of circulating tumors. Discrete targeting of HIF1α signaling or inhibiting macrophages offers potential strategies for improving the outcome of surgical management of hepatic metastases where HTI is used.


Subject(s)
Adenocarcinoma/secondary , Burns, Electric/pathology , Colonic Neoplasms/pathology , Liver Neoplasms/secondary , Liver/pathology , Tumor Microenvironment , Adenocarcinoma/metabolism , Animals , Arginase/genetics , Arginase/metabolism , Burns, Electric/genetics , Burns, Electric/metabolism , Cell Line, Tumor , Colonic Neoplasms/metabolism , Disease Models, Animal , Disease Progression , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver/metabolism , Liver Neoplasms/metabolism , Macrophage Activation , Mice, Inbred C57BL , Neoplasm Transplantation , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
Nat Immunol ; 9(12): 1399-406, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18978793

ABSTRACT

Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a 'loophole' in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 responses in which Arg1 expression is greatly increased by interleukin 4 and 13 signaling through the transcription factor STAT6, TLR-mediated Arg1 induction was independent of the STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival during T. gondii infection and decreased lung bacterial load during tuberculosis infection.


Subject(s)
Arginase/immunology , Bacterial Infections/immunology , Macrophages/immunology , Macrophages/microbiology , Toll-Like Receptors/immunology , Animals , Arginase/metabolism , CCAAT-Enhancer-Binding Protein-beta/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Immunoblotting , Immunohistochemistry , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , STAT6 Transcription Factor/immunology , STAT6 Transcription Factor/metabolism , Toll-Like Receptors/metabolism
7.
J Immunol ; 198(12): 4802-4812, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28500078

ABSTRACT

Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases.


Subject(s)
Hypertension, Pulmonary/immunology , Hypoxia/immunology , Lung/immunology , Macrophage Activation , Macrophages, Alveolar/immunology , Animals , Cells, Cultured , Fibroblasts/immunology , Gene Expression , Lung/physiopathology , Mice , Monocytes/immunology , Phenotype , Pulmonary Artery/physiology
8.
Semin Immunol ; 27(4): 267-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26454572

ABSTRACT

Macrophages display a spectrum of functional activation phenotypes depending on the composition of the microenvironment they reside in, including type of tissue/organ and character of injurious challenge they are exposed to. Our understanding of how macrophage plasticity is regulated by the local microenvironment is still limited. Here we review and discuss the recent literature regarding the contribution of cellular metabolic pathways to the ability of the macrophage to sense the microenvironment and to alter its function. We propose that distinct alterations in the microenvironment induce a spectrum of inducible and reversible metabolic programs that might form the basis of the inducible and reversible spectrum of functional macrophage activation/polarization phenotypes. We highlight that metabolic pathways in the bidirectional communication between macrophages and stromals cells are an important component of chronic inflammatory conditions. Recent work demonstrates that inflammatory macrophage activation is tightly associated with metabolic reprogramming to aerobic glycolysis, an altered TCA cycle, and reduced mitochondrial respiration. We review cytosolic and mitochondrial mechanisms that promote initiation and maintenance of macrophage activation as they relate to increased aerobic glycolysis and highlight potential pathways through which anti-inflammatory IL-10 could promote macrophage deactivation. Finally, we propose that in addition to their role in energy generation and regulation of apoptosis, mitochondria reprogram their metabolism to also participate in regulating macrophage activation and plasticity.


Subject(s)
Macrophage Activation , Macrophages/cytology , Macrophages/metabolism , Citric Acid Cycle , Glycolysis , Humans , Inflammation/immunology , Macrophages/immunology
9.
Circulation ; 136(25): 2468-2485, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-28972001

ABSTRACT

BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1ß expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Hypertension, Pulmonary/pathology , MicroRNAs/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Pyruvate Kinase/metabolism , Alternative Splicing , Animals , Antagomirs/metabolism , Cattle , Cell Proliferation , Endothelium, Vascular/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycolysis , Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Hypertension, Pulmonary/metabolism , Interleukin-1beta/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Naphthoquinones/pharmacology , Polypyrimidine Tract-Binding Protein/antagonists & inhibitors , Polypyrimidine Tract-Binding Protein/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/genetics , RNA Interference
10.
Am J Respir Cell Mol Biol ; 56(3): 362-371, 2017 03.
Article in English | MEDLINE | ID: mdl-27805412

ABSTRACT

Loss of extracellular superoxide dismutase 3 (SOD3) contributes to inflammatory and fibrotic lung diseases. The human SOD3 R213G polymorphism decreases matrix binding, redistributing SOD3 from the lung to extracellular fluids, and protects against LPS-induced alveolar inflammation. We used R213G mice expressing a naturally occurring single-nucleotide polymorphism, rs1799895, within the heparin-binding domain of SOD3, which results in an amino acid substitution at position 213 to test the hypothesis that the redistribution of SOD3 into the extracellular fluids would impart protection against bleomycin-induced lung fibrosis and secondary pulmonary hypertension (PH). In R213G mice, SOD3 content and activity was increased in extracellular fluids and decreased in lung at baseline, with greater increases in bronchoalveolar lavage fluid (BALF) SOD3 compared with wild-type mice 3 days after bleomycin. R213G mice developed less fibrosis based on pulmonary mechanics, fibrosis scoring, collagen quantification, and gene expression at 21 days, and less PH by right ventricular systolic pressure and pulmonary arteriole medial wall thickening at 28 days. In wild-type mice, macrophages, lymphocytes, neutrophils, proinflammatory cytokines, and protein increased in BALF on Day 7 and/or 21. In R213G mice, total BALF cell counts increased on Day 7 but resolved by 21 days. At 1 or 3 days, BALF pro- and antiinflammatory cytokines and BALF protein were higher in R213G mice, resolving by 21 days. We conclude that the redistribution of SOD3 as a result of the R213G single-nucleotide polymorphism protects mice from bleomycin-induced fibrosis and secondary PH by improved resolution of alveolar inflammation.


Subject(s)
Pneumonia/complications , Pneumonia/genetics , Polymorphism, Single Nucleotide/genetics , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/genetics , Superoxide Dismutase/genetics , Alveolar Epithelial Cells/metabolism , Animals , Bleomycin , Bronchoalveolar Lavage Fluid , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Mice, Inbred C57BL , Models, Biological , Pneumonia/blood , Pneumonia/enzymology , Pneumonia/physiopathology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/physiopathology , Superoxide Dismutase/blood , Vascular Remodeling
11.
Circulation ; 134(15): 1105-1121, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27562971

ABSTRACT

BACKGROUND: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). METHODS: RNA sequencing, quantitative polymerase chain reaction,13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. RESULTS: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. CONCLUSIONS: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.


Subject(s)
Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Adventitia/metabolism , Adventitia/pathology , Alcohol Oxidoreductases/genetics , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Fibroblasts/pathology , Humans , Hypertension, Pulmonary/pathology , Mice , Phenotype
12.
J Immunol ; 195(8): 3866-79, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26342031

ABSTRACT

Elevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed. Using pharmacologic inhibitors, ET-1 promoter luciferase assays, and by silencing and overexpressing NF-κB inhibitory protein IκB expression, we demonstrate that LPS-induced ET-1 expression occurs via an NF-κB-dependent pathway. Finally, the specific role of the cRel/p65 inhibitory protein IκBß was evaluated. Although cytoplasmic IκBß inhibits activity of cRel-containing NF-κB dimers, nuclear IκBß stabilizes NF-κB/DNA binding and enhances gene expression. Using targeted pharmacologic therapies to specifically prevent IκBß/NF-κB signaling, as well as mice genetically modified to overexpress IκBß, we show that nuclear IκBß is both necessary and sufficient to drive LPS-induced ET-1 expression. Together, these results mechanistically link the innate immune response mediated by IκBß/NF-κB to ET-1 expression and potentially reveal therapeutic targets for patients with Gram-negative septic shock.


Subject(s)
Endothelin-1/immunology , Endotoxemia/immunology , Gene Expression Regulation/immunology , I-kappa B Proteins/immunology , Liver/immunology , Macrophages/immunology , NF-kappa B/immunology , Signal Transduction/immunology , Animals , Cell Line , Endothelin-1/genetics , Endotoxemia/genetics , Endotoxemia/pathology , I-kappa B Proteins/genetics , Liver/pathology , Macrophages/pathology , Male , Mice , Mice, Inbred ICR , Mice, Transgenic , NF-kappa B/genetics , Signal Transduction/genetics
13.
Adv Exp Med Biol ; 967: 241-260, 2017.
Article in English | MEDLINE | ID: mdl-29047090

ABSTRACT

Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.


Subject(s)
Energy Metabolism , Hypertension, Pulmonary/metabolism , Signal Transduction , Animals , Glycolysis , Humans , Hypertension, Pulmonary/physiopathology , Macrophages/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Vascular Remodeling
14.
Annu Rev Physiol ; 75: 23-47, 2013.
Article in English | MEDLINE | ID: mdl-23216413

ABSTRACT

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Subject(s)
Adventitia/physiology , Blood Vessels/cytology , Blood Vessels/physiology , Adventitia/cytology , Animals , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Macrophages/cytology , Macrophages/physiology , Stem Cells/cytology , Stem Cells/physiology , Stress, Physiological/physiology , Vasa Vasorum/cytology , Vasa Vasorum/physiology
15.
Am J Respir Cell Mol Biol ; 55(1): 47-57, 2016 07.
Article in English | MEDLINE | ID: mdl-26699943

ABSTRACT

Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.


Subject(s)
Cellular Reprogramming , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Mitochondria/metabolism , Animals , Cattle , Cell Respiration , Chronic Disease , Citric Acid Cycle , Down-Regulation , Electron Transport Complex I/metabolism , Energy Metabolism , Glycolysis , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/pathology , Hypoxia/complications , Hypoxia/pathology , Lung/pathology , Macrophages/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Paracrine Communication , Phenotype , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Superoxides/metabolism
16.
J Immunol ; 193(2): 597-609, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24928992

ABSTRACT

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPß signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPß or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPß signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPß or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.


Subject(s)
Fibroblasts/immunology , Hypertension, Pulmonary/immunology , Macrophage Activation/immunology , Macrophages/immunology , Animals , Animals, Newborn , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cattle , Cell Line, Tumor , Cells, Cultured , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/immunology , Fibrosis/metabolism , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression/immunology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Interleukin-6/metabolism , Interleukin-6/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Rats, Inbred WKY , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 308(3): L229-52, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25416383

ABSTRACT

Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.


Subject(s)
Hypertension, Pulmonary/immunology , Vasculitis/immunology , Animals , Cell Hypoxia , Epigenesis, Genetic/immunology , Humans , Hypertension, Pulmonary/metabolism , Lung/blood supply , Lung/immunology , Macrophages, Alveolar/immunology , Signal Transduction , Vasculitis/metabolism
18.
J Infect Dis ; 209(7): 1116-25, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24041791

ABSTRACT

BACKGROUND: Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infections in the ear, lung, blood, and brain. They share cross-reactive antigens that bind to the laminin receptor of the blood-brain barrier as a molecular basis for neurotropism, and this step in pathogenesis was addressed in vaccine design. METHODS: Biologically active peptides derived from choline-binding protein A (CbpA) of pneumococcus were identified and then genetically fused to L460D pneumolysoid. The fusion construct was tested for vaccine efficacy in mouse models of nasopharyngeal carriage, otitis media, pneumonia, sepsis, and meningitis. RESULTS: The CbpA peptide-L460D pneumolysoid fusion protein was more broadly immunogenic than pneumolysoid alone, and antibodies were active in vitro against Streptococcus pneumoniae, Neisseria meningitidis, and H. influenzae. Passive and active immunization protected mice from pneumococcal carriage, otitis media, pneumonia, bacteremia, meningitis, and meningococcal sepsis. CONCLUSIONS: The CbpA peptide-L460D pneumolysoid fusion protein was broadly protective against pneumococcal infection, with the potential for additional protection against other meningeal pathogens.


Subject(s)
Bacterial Proteins/immunology , Carrier State/prevention & control , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptolysins/immunology , Toxoids/immunology , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/genetics , Cross Protection , Disease Models, Animal , Female , Haemophilus influenzae/immunology , Mice , Mice, Inbred BALB C , Neisseria meningitidis/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Streptococcus pneumoniae/immunology , Streptolysins/genetics , Toxoids/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
19.
J Biol Chem ; 288(17): 11761-70, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23460643

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) affects a large proportion of the American population. The spectrum of disease ranges from bland steatosis without inflammation to nonalcoholic steatohepatitis and cirrhosis. Bile acids are critical regulators of hepatic lipid and glucose metabolism and signal through two major receptor pathways: farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, and TGR5, a G protein-coupled bile acid receptor (GPBAR1). Both FXR and TGR5 demonstrate pleiotropic functions, including immune modulation. To evaluate the effects of these pathways in NAFLD, we treated obese db/db mice with a dual FXR/TGR5 agonist (INT-767) for 6 weeks. Treatment with the agonist significantly improved the histological features of nonalcoholic steatohepatitis. Furthermore, treatment increased the proportion of intrahepatic monocytes with the anti-inflammatory Ly6C(low) phenotype and increased intrahepatic expression of genes expressed by alternatively activated macrophages, including CD206, Retnla, and Clec7a. In vitro treatment of monocytes with INT-767 led to decreased Ly6C expression and increased IL-10 production through a cAMP-dependent pathway. Our data indicate that FXR/TGR5 activation coordinates the immune phenotype of monocytes and macrophages, both in vitro and in vivo, identifying potential targeting strategies for treatment of NAFLD.


Subject(s)
Fatty Liver/metabolism , Liver/metabolism , Monocytes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cyclic AMP/immunology , Cyclic AMP/metabolism , Fatty Liver/immunology , Fatty Liver/pathology , Gene Expression Regulation/immunology , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Lectins, C-Type/biosynthesis , Lectins, C-Type/immunology , Liver/immunology , Liver/pathology , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/biosynthesis , Mannose-Binding Lectins/immunology , Mice , Mice, Obese , Monocytes/immunology , Monocytes/pathology , Non-alcoholic Fatty Liver Disease , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/immunology , Receptors, Cytoplasmic and Nuclear/immunology , Receptors, G-Protein-Coupled/immunology
20.
Acta Biomater ; 177: 118-131, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38350556

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Subject(s)
Extracellular Matrix , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Fibrosis , Collagen , Fibroblasts/pathology , Hydrogels/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL