Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
EMBO J ; 40(3): e105784, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33411331

ABSTRACT

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Protein Kinase Inhibitors/pharmacology , Up-Regulation , Anaplastic Lymphoma Kinase/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Gain of Function Mutation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Sequence Analysis, RNA , Xenograft Model Antitumor Assays
2.
Ecotoxicology ; 33(3): 305-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446268

ABSTRACT

Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.


Subject(s)
Aedes , Culex , Insecticides , Metal Nanoparticles , Animals , Insecticides/toxicity , Larva , Plant Extracts
3.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879326

ABSTRACT

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Subject(s)
Feeding Behavior , Insect Proteins , Intestinal Mucosa , Locusta migratoria , Qa-SNARE Proteins , Locusta migratoria/genetics , Locusta migratoria/growth & development , Locusta migratoria/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Intestinal Mucosa/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Feeding Behavior/physiology , Gene Knockdown Techniques , Sequence Homology, Amino Acid , Tissue Distribution , Body Weight/genetics , Gene Expression Regulation, Developmental
4.
Drug Chem Toxicol ; 46(6): 1070-1082, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36196508

ABSTRACT

This study was conducted to investigate the protective potential of a pharmaceutically formulated capsule of artichoke leaf powder (ArLP) against aflatoxin B1 (AFB1)-induced hepatotoxicity in male albino rats. In the 42-day experiment, rats were divided into five equal groups: (i) control, treated with sterile water, (ii) treated with 4% DMSO as AFB1 vehicle, (iii) ArLP of 100 mg kg-1 bw, (iv) AFB1 of 72 µg kg-1 bw, and (v) AFB1 plus ArLP. Exposure of rats to AFB1 resulted in hepatotoxicity as manifested by the intensification of oxidative stress, production of free radicals and significant increase in the activity levels of liver function enzymes relative to the control. Significant reductions in both the enzymatic and non-enzymatic antioxidant markers as well as histopathological abnormalities in liver tissues were also observed. Notably, the combined administration of ArLP with AFB1 clearly reduced AFB1-mediated adverse effects leading to the normalization of most of these parameters back to control levels. These findings clearly highlight the potential benefits of artichoke dietary supplements as a safe and natural solution in counteracting the adverse hepatotoxic effects conferred by AFB1 exposure. Further research is warranted to fully dissect the biochemical and molecular mechanism of action of the observed artichoke-mediated hepatoprotection.


Subject(s)
Aflatoxin B1 , Cynara scolymus , Dietary Supplements , Plant Extracts , Animals , Rats , Aflatoxin B1/toxicity , Cynara scolymus/chemistry , Plant Leaves/chemistry , Rats, Wistar , Male , Plant Extracts/administration & dosage , Liver/drug effects
5.
Reprod Biol Endocrinol ; 20(1): 158, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401334

ABSTRACT

BACKGROUND: Steroidogenesis is a complex process of sequential enzymatic reactions affected by climate change. Animals respond to altered day length, the so-called photoperiod, with changes in physiology. The study aimed to an evaluation of sericin effect in alleviating steroidogenesis disorders induced by disturbed photoperiod in mice. METHODS: The animals were randomly divided into three groups according to the lighting cycle: a control group with a standard 12Light:12Dark cycle, a short-term photoperiod group with a 6Light:18Dark cycle, and a long-term photoperiod group with an 18Light:6Dark cycle. Both short and long-term groups were subdivided into two equal subgroups: The placebo and the sericin-treated subgroups received, for five weeks from prepubertal throughout adulthood, one intraperitoneal injection per week of the solvent and 1 g sericin/kg body weight, respectively. RESULTS: Selected oxidative stress parameters and testicular and adrenal steroidogenic capacities of adult mice were measured. After five weeks, the placebo group with impaired photoperiod showed a decrease in the quality and quantity of sperm and a reduction in testosterone, corticosterone, aldosterone, total antioxidant capacity, xanthine oxidase, and melatonin. At the same time, in these groups, there was an increase in the level of aromatase, malondialdehyde, cholesterol, and steroidogenic factor-1 (SF-1) expression in the adrenal cortex and an enhancement in histological lesions. Mice receiving sericin had parameters similar to the control group. CONCLUSION: Our findings reveal that silk sericin can reduce the stress caused by photoperiod disorders regarding testicular function, sex hormone levels, and sperm quantity and quality. Thus, sericin is a biocompatible protein with a promising potential for its use in the case of organisms living under an abnormal photoperiod.


Subject(s)
Photoperiod , Sericins , Animals , Male , Mice , Organ Size , Semen , Sericins/pharmacology , Testis
6.
BMC Vet Res ; 18(1): 302, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35932057

ABSTRACT

BACKGROUND: Lumpy skin disease (LSD), a disease of cattle and buffaloes, has recently become widely prevalent in Egypt. The aim of this study was to ascertain the potential role of Rhipicephalus (Boophilus) annulatus ticks in the transmission of this disease. Samples collected from suspected lumpy skin disease virus (LSDV) infected cows that had previously been vaccinated with the Romanian sheep pox virus (SPPV) in various Egyptian governorates were obtained between May to November over two consecutive years, namely 2018 and 2019. Ticks were morphologically identified and the partial cytochrome oxidase subunit I gene (COI) were sequenced, revealing that they were closely related to R. (Boophilus) annulatus. The G-protein-coupled chemokine receptor (GPCR) gene of the LSDV was used to test hard ticks. RESULTS: Two positive samples from Kafr El-Sheikh province and one positive sample from Al-Behera province were reported. BLAST analysis revealed that the positive samples were closely related to the Kazakhstani Kubash/KAZ/16 strain (accession number MN642592). Phylogenetic analysis revealed that the GPCR gene of the LSDV recently circulating in Egypt belongs to a global cluster of field LSDV with a nucleotide identity of 98-100%. LSDV isolation was successfully performed four days after inoculation using 9 to 11-day-old embryonated chicken eggs showing characteristic focal white pock lesions dispersed on the choriallantoic membrane after three blind passages. Intracytoplasmic inclusion bodies, cell rupture, vacuoles in cells, and virus particles ovoid in shape were demonstrated by electron microscopy. CONCLUSION: In this study the role of hard ticks in the transmission of the LSDV to susceptible animals in Egypt was revealed and confirmed by various methods.


Subject(s)
Cattle Diseases , Ixodidae , Lumpy Skin Disease , Lumpy skin disease virus , Rhipicephalus , Sheep Diseases , Animals , Cattle , Egypt , Female , Lumpy skin disease virus/genetics , Phylogeny , Rhipicephalus/genetics , Sheep
7.
Pharmacol Res ; 170: 105749, 2021 08.
Article in English | MEDLINE | ID: mdl-34214630

ABSTRACT

This review summarizes the four processes of wound healing in the human body (hemostasis, inflammatory, proliferation, and remodeling) and the most current research on the most important factors affecting cutaneous wound healing and the underlying cellular and/or molecular pathways. Local factors, including temperature, oxygenation, and infection, and systemic factors, such as age, diabetes, sex hormones, genetic components, autoimmune diseases, psychological stress, smoking and obesity are also addressed. A better understanding of the role of these factors in wound repair could result in the development of therapeutics that promote wound healing and resolve affected wounds. Additionally, natural products obtained from plants and animals are critical targets for the discovery of novel biologically significant pharmacophores, such as medicines and agrochemicals. This review outlines the most recent advances in naturally derived targeted treatment for wound healing. These are plant-derived natural products, insect-derived natural products, marine-derived natural products, nanomaterial-based wound-healing therapeutics (metal- and non-metal-based nanoparticles), and natural product-based nanomedicine to improve the future direction of wound healing. Natural products extracted from plants and animals have advanced significantly, particularly in the treatment of wound healing. As a result, the isolation and extraction of bioactive compounds from a variety of sources can continue to advance our understanding of wound healing. Undescribed bioactive compounds or unexplored formulations that could have a role in today's medicinal arsenal may be contained in the abundance of natural products and natural product derivatives.


Subject(s)
Aquatic Organisms , Biological Products/therapeutic use , Insecta , Plant Preparations/therapeutic use , Skin/drug effects , Wound Healing/drug effects , Wounds and Injuries/drug therapy , Animals , Aquatic Organisms/chemistry , Biological Products/adverse effects , Biological Products/isolation & purification , Humans , Insecta/chemistry , Nanomedicine , Phytotherapy , Plant Preparations/adverse effects , Plant Preparations/isolation & purification , Skin/metabolism , Skin/pathology , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
8.
Hum Mol Genet ; 21(22): 4922-9, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22918120

ABSTRACT

Primary aldosteronism (PA, autonomous aldosterone production from the adrenal cortex) causes the most common form of secondary arterial hypertension (HT), which is also the most common curable form of HT. Recent studies have highlighted an important role of mutations in genes encoding potassium channels in the pathogenesis of PA, both in human disease and in animal models. Here, we have exploited the unique features of the hyperaldosteronemic phenotype of Kcnk3 null mice, which is dependent on sexual hormones, to identify genes whose expression is modulated in the adrenal gland according to the dynamic hyperaldosteronemic phenotype of those animals. Genetic inactivation of one of the genes identified by our strategy, dickkopf-3 (Dkk3), whose expression is increased by calcium influx into adrenocortical cells, in the Kcnk3 null background results in the extension of the low-renin, potassium-rich diet insensitive hyperaldosteronemic phenotype to the male sex. Compound Kcnk3/Dkk3 animals display an increased expression of Cyp11b2, the rate-limiting enzyme for aldosterone biosynthesis in the adrenal zona glomerulosa (ZG). Our data show that Dkk3 can act as a modifier gene in a mouse model for altered potassium channel function and suggest its potential involvement in human PA syndromes.


Subject(s)
Adrenal Cortex/metabolism , Aldosterone/biosynthesis , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing , Adrenal Cortex/pathology , Animals , Calcium/metabolism , Cluster Analysis , Female , Gene Expression Profiling , Gene Silencing , Hyperaldosteronism/genetics , Hyperaldosteronism/metabolism , Male , Mice , Mice, Knockout , Phenotype
9.
Heliyon ; 10(7): e28392, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560219

ABSTRACT

Upon uptake of toxins, insects launch a detoxification program. This program is deployed in multiple organs and cells to raise their tolerance against the toxin. The molecular mechanisms of this program inside the insect body have been studied and understood in detail. Here, we report on a yet unexplored extra-corporeal detoxification of insecticides in Drosophila melanogaster. Wild-type D. melanogaster incubated with DDT, a contact insecticide, in a closed environment died as expected. However, incubation of a second cohort in the same environment after removal of the dead flies was not lethal. The effect was significantly lower if the flies of the two cohorts were unrelated. Incubation assays with Chlorpyrifos, another contact insecticide, yielded identical results, while incubation assays with Chlorantraniliprole, again a contact insecticide, was toxic for the second cohort of flies. A cohort of flies incubated in a DDT environment after an initial incubation of a honeybee survived treatment. Together, our data suggest that insects including Apis mellifera and D. melanogaster have the capacity to modify their proximate environment. Consequently, in their ecological niche, following individuals might be saved from intoxication thereby facilitating colonisation of an attractive site.

10.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Article in English | MEDLINE | ID: mdl-38537854

ABSTRACT

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Subject(s)
Locusta migratoria , RNA Interference , Animals , Locusta migratoria/genetics , Locusta migratoria/growth & development , Homeostasis , Insect Proteins/genetics , Insect Proteins/metabolism , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/genetics , Gastrointestinal Tract/metabolism
11.
Biol Trace Elem Res ; 202(4): 1612-1627, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37500819

ABSTRACT

Heavy metal toxicity is an exponentially growing health problem. In this study, we aimed to assess the protective properties of propolis and royal jelly against cadmium adverse effects. Thirty-two adult male rats were included in our study; kidney and liver functions, histopathological changes, and the level of oxidative stress were evaluated in rats exposed to a daily dose of 4.5 mg cadmium per kilogram of body weight for 1 month and those cotreated simultaneously with either propolis (50 mg/kg/day) or royal jelly (200 mg/kg/day) with cadmium compared to control animals. Cadmium-mediated hepatorenal toxicity was manifested as per the increased oxidative stress, function deterioration, and characteristic histopathological aberrations. The supplementation of royal jelly or propolis restores most of the affected parameters to a level similar to the control group. However, the parameters describing the grade of DNA damage and the interleukin-1ß expression in the liver, as well as the levels of malondialdehyde and metallothionein, were slightly elevated compared to controls, despite the regular use of royal jelly or propolis. It is worth noting that better results were found in the case of royal jelly compared to propolis administration. Most likely, the ability of both products to chelate cadmium and contribute in reducing oxidative stress is of great importance. However, further investigations are needed to complement the knowledge about the expected nutritional and medicinal values.


Subject(s)
Cadmium Poisoning , Propolis , Rats , Male , Animals , Propolis/pharmacology , Cadmium/toxicity , Oxidative Stress , Cadmium Poisoning/drug therapy , Fatty Acids
12.
Tissue Cell ; 85: 102244, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856936

ABSTRACT

OBJECTIVE: Herein, we compare the features of neoplastic cancer cells in invasive ductal carcinoma (IDC) grade II and III patients to their corresponding normal cells both in breast and axillary lymph node (ALN) tissues. METHODS: A retrospective cohort of 70 female breast cancer patients enrolled between 2018 and 2020 at Medical Research Institute, Alexandria University, Egypt, was analyzed for clinicopathological features presentation. Fresh tiny pieces of breast tissue and its associated ALN tissues were then processed to investigate the morphological appearance by scanning electron microscopy. Moreover, the histological architecture of tissue sections stained with hematoxylin and eosin was studied by light microscope, while the characterization of the ultrastructure features of breast and ALN tissues was analyzed by transmission electron microscopy. RESULTS: Clinicopathological presentation of patients revealed that the Egyptian female breast cancer population adhered to the global trends of breast cancer disease with elevated incidence rate among postmenopausal women (61.3%), high frequency of IDC (95.7%), and increased ALN metastasis (65.7%). The percentage of estrogen receptor alpha (ERα) and human epidermal growth factor receptor 2 (HER2) expression, as key indicators for carcinogenesis and disease progression was 87.1% and 55.8%, respectively. The present study points to the observed discrepancies among the investigated variables in the diagnostic separation between IDC grade II and grade III. Ductal epithelial cells organization, nuclei size and irregularity, chromatin amount and uniformity, mitochondrial abundance and dysfunction were differentially manifested in IDC grades. Moreover, aberrations in the cellular organelles like lysosomes, endoplasmic reticulum, and lipid droplets vary according to the grade of IDC and the aggressiveness of the invasive breast cancer. CONCLUSIONS: To sum up, this study emphasizes the importance of accurate specimen evaluation for treatment choice and decision.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Female , Humans , Egypt , Retrospective Studies , Breast Neoplasms/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology
13.
Tissue Cell ; 82: 102101, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37141749

ABSTRACT

OBJECTIVE: Assessing the beneficial effects of silk sericin against hepatic injury induced by diethylnitrosamine (DEN). METHODS: Aiming at promoting sericin as a natural product able to counteract the hazards of toxic elements, HPLC profile was conducted on the extracted sericin sample versus the standard one to qualitatively identify it. Following sericin treatment on human HepG2 liver cancer cells, many parameters were analyzed in vitro including cell viability, cell cycle, and cell apoptosis. Hepatic pro-inflammatory cytokines as well as histopathological and ultrastructure changes were evaluated in vivo in the different experimental groups. RESULTS: Sericin exhibited a dose-dependent cytotoxic effect on HepG2 cells with an IC50 of 14.12 + 0.75 µg/mL. The hepatotoxicity of DEN was manifested in mice by increased pro-inflammatory markers (IL-2, IL-6, and TNF-α), decreased IL-10, liver structure deterioration, and characteristic histopathological and ultrastructure changes. Sericin administration reversed most of the observed alterations inflected by DEN. CONCLUSIONS: Our results substantiate the sericin's powerful apoptotic impact in vitro. In experimental mice, combination treatment using sericin together with melatonin appears to be more potent in mitigating the adverse effects of DEN. However, further investigations are needed to identify the underlying mechanism of action and complement the knowledge about the expected medicinal values of sericin.


Subject(s)
Liver Neoplasms , Sericins , Mice , Humans , Animals , Sericins/pharmacology , Sericins/chemistry , Cytokines , Tumor Necrosis Factor-alpha , Silk
14.
Insect Sci ; 30(2): 268-278, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36114809

ABSTRACT

The polysaccharide chitin is a major scaffolding molecule in the insect cuticle. In order to be functional, both chitin amounts and chitin organization have been shown to be important parameters. Despite great advances in the past decade, the molecular mechanisms of chitin synthesis and organization are not fully understood. Here, we have characterized the function of the Chitinase 6 (Cht6) in the formation of the wing, which is a simple flat cuticle organ, in the fruit fly Drosophila melanogaster. Reduction of Cht6 function by RNA interference during wing development does not affect chitin organization, but entails a thinner cuticle suggesting reduced chitin amounts. This phenotype is opposed to the one reported recently to be caused by reduction of Cht10 expression. Probably as a consequence, cuticle permeability to xenobiotics is enhanced in Cht6-less wings. We also observed massive deformation of these wings. In addition, the shape of the abdomen is markedly changed upon abdominal suppression of Cht6. Finally, we found that suppression of Cht6 transcript levels influences the expression of genes coding for enzymes of the chitin biosynthesis pathway. This finding indicates that wing epidermal cells respond to activity changes of Cht6 probably trying to adjust chitin amounts. Together, in a working model, we propose that Cht6-introduced modifications of chitin are needed for chitin synthesis to proceed correctly. Cuticle thickness, according to our hypothesis, is in turn required for correct organ or body part shape. The molecular mechanisms of this processes shall be characterized in the future.


Subject(s)
Chitinases , Drosophila Proteins , Animals , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Drosophila/genetics , Drosophila melanogaster , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Wings, Animal/metabolism
15.
Int J Radiat Biol ; 99(12): 1978-1989, 2023.
Article in English | MEDLINE | ID: mdl-37382969

ABSTRACT

PURPOSE: Irradiation of food is promising for control of pests to minimize postharvest losses of yields and thus improvement of food safety, shelf life of produce. It is a method of choice that induces a series of lethal biochemical and molecular changes culminating into the engagement of a downstream cascade to cause abnormalities in irradiated pests. In this study, the effects of iodine-131 (131I) isotope radiation on the male gonad development of the migratory locust, Locusta migratoria, were evaluated. MATERIALS AND METHODS: Newly emerged adult male locusts, less than one-day-old, were divided into two groups, control and irradiated. Locusts in the control group (n = 20 insects) didn't drink irradiated water and were reared under normal environmental conditions for one week. Locusts in the irradiated group (n = 20 insects) were exposed to irradiated water at a dose of 30 mCi and they were subsequently observed until they drank the whole quantity. RESULTS: At the end of the experiment, scanning and electron microscopic examination of testes obtained from irradiated locusts revealed several major abnormalities, including malformed nuclei of spermatozoa, irregular plasma membranes, shrinkage of testicular follicles, vacuolated cytoplasm, disintegrated nebenkern and agglutinations of spermatids. Flow cytometry analysis revealed that 131I radiation induced both early and late apoptosis, but not necrosis, in testicular tissues. Testes of irradiated insects also exhibited a burst in reactive oxygen species (ROS), as indicated by significant elevation in amounts of malondialdehyde (MDA), a marker for peroxidation of lipids. In contrast, irradiation coincided with significant reductions in activities of enzymatic antioxidant biomarkers. Relative to controls, a three-fold upregulation of expression of mRNA of heat shock protein, Hsp90, was observed in testicular tissue of irradiated locusts. 131I-irradiated insects exhibited genotoxicity, as indicated by significant increases in various indicators of DNA damage by the comet assay, including tail length (7.80 ± 0.80 µm; p < .01), olive tail moment (40.37 ± 8.08; p < .01) and tail DNA intensity % (5.1 ± 0.51; p < .01), in testicular cells compared to the controls. CONCLUSION: This is the first report on elucidation of I131-irradiation-mediated histopathological, biochemical and molecular mechanisms in gonads of male L. migratoria. Herein, the findings underscore the utility of 131I radiation as an eco-friendly postharvest strategy for management of insect pests and in particular for control of populations of L. migratoria.


Subject(s)
Locusta migratoria , Animals , Male , Locusta migratoria/chemistry , Locusta migratoria/genetics , Conservation of Natural Resources , Water
16.
Pest Manag Sci ; 79(10): 3993-3998, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37269066

ABSTRACT

BACKGROUND: The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS: In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION: These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.


Subject(s)
Sex Attractants , Animals , Female , Spodoptera/physiology , Sex Attractants/pharmacology , Sex Attractants/metabolism , RNA Interference , Communication , Insect Proteins/metabolism
17.
Antioxidants (Basel) ; 12(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36978901

ABSTRACT

In this study, we shed light for the first time on the usage of migratory locusts (Locusta migratoria) as an insect model to investigate the nanotoxicological influence of aluminum oxide (Al2O3) nanoparticles at low doses on testes, and evaluate the capacity of a whole-body extract of American cockroaches (Periplaneta americana) (PAE) to attenuate Al2O3 NPs-induced toxicity. Energy dispersive X-ray microanalyzer (EDX) analysis verified the bioaccumulation of Al in testicular tissues due to its liberation from Al2O3 NPs, implying their penetration into the blood-testis barrier. Remarkably, toxicity with Al engendered disorders of antioxidant and stress biomarkers associated with substantial DNA damage and cell apoptosis. Furthermore, histopathological and ultrastructural analyses manifested significant aberrations in the testicular tissues from the group exposed to Al2O3 NPs, indicating the overproduction of reactive oxygen species (ROS). Molecular docking analysis emphasized the antioxidant capacity of some compounds derived from PAE. Thus, pretreatment with PAE counteracted the detrimental effects of Al in the testes, revealing antioxidant properties and thwarting DNA impairment and cell apoptosis. Moreover, histological and ultrastructural examinations revealed no anomalies in the testes. Overall, these findings substantiate the potential applications of PAE in preventing the testicular impairment of L. migratoria and the conceivable utilization of locusts for nanotoxicology studies.

18.
EMBO J ; 27(1): 179-87, 2008 Jan 09.
Article in English | MEDLINE | ID: mdl-18034154

ABSTRACT

TASK1 (KCNK3) and TASK3 (KCNK9) are two-pore domain potassium channels highly expressed in adrenal glands. TASK1/TASK3 heterodimers are believed to contribute to the background conductance whose inhibition by angiotensin II stimulates aldosterone secretion. We used task1-/- mice to analyze the role of this channel in adrenal gland function. Task1-/- exhibited severe hyperaldosteronism independent of salt intake, hypokalemia, and arterial 'low-renin' hypertension. The hyperaldosteronism was fully remediable by glucocorticoids. The aldosterone phenotype was caused by an adrenocortical zonation defect. Aldosterone synthase was absent in the outer cortex normally corresponding to the zona glomerulosa, but abundant in the reticulo-fasciculata zone. The impaired mineralocorticoid homeostasis and zonation were independent of the sex in young mice, but were restricted to females in adults. Patch-clamp experiments on adrenal cells suggest that task3 and other K+ channels compensate for the task1 absence. Adrenal zonation appears as a dynamic process that even can take place in adulthood. The striking changes in the adrenocortical architecture in task1-/- mice are the first demonstration of the causative role of a potassium channel in development/differentiation.


Subject(s)
Adrenal Glands/metabolism , Homeostasis/genetics , Mineralocorticoids/antagonists & inhibitors , Mineralocorticoids/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Potassium Channels, Tandem Pore Domain/deficiency , Potassium Channels, Tandem Pore Domain/genetics , Adrenal Glands/pathology , Aldosterone/blood , Aldosterone/metabolism , Animals , Female , Hyperaldosteronism/genetics , Hyperaldosteronism/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Potassium/blood , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Renin/blood
19.
Mult Scler Relat Disord ; 59: 103650, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35124303

ABSTRACT

BACKGROUND: Multiple sclerosis and its related stressors have a significant emotional impact. Patients with multiple sclerosis are more likely to experience disturbed mood states and pain exacerbations when they experience stressful life events. OBJECTIVE: The study aimed to determine the relationship between increased perceived stress, mood states, and pain experience in patients with multiple sclerosis. METHODS: A convenience sample of 110 patients with multiple sclerosis was assembled from the neuropsychiatric outpatient clinics at El- Hadara Orthopedic and Traumatology Alexandria University Hospital. Four tools were used: a biosocio-demographic data structured questionnaire, a Perceived Stress Scale, a Profile of Mood States, and a Numeric Rating Pain Scale. CONCLUSION: This study concluded that the majority of patients studied experienced moderate to severe levels of increased perceived stress. Disturbed mood states and pain perception were found to be significantly associated with patients' perceived stress levels.


Subject(s)
Multiple Sclerosis , Emotions , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/psychology , Pain/etiology , Stress, Psychological/complications , Surveys and Questionnaires
20.
Sci Rep ; 12(1): 8358, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589839

ABSTRACT

Assessing the time of death based on the growth and development of insects is a critical task in forensic entomology. The rate of larvae development can be affected by a variety of toxins, including pesticides. Aluminum phosphide (AlP) is a low-cost insecticide that has yet to be tested for entomotoxicological significance, despite the fact that it is frequently the cause of fatal poisoning. In this study, we measured the body length of Chrysomya albiceps larvae reared on the carcasses of rabbits poisoned with AlP and analyzed the morphological changes of the larvae reared on the carcasses of rabbits poisoned with AlP. The concentration of AlP in the body of the larvae was significantly lower than in rabbit tissues. Insects from the AlP group had a significantly lower gain in body length. Furthermore, deformities in the larvae were found. Smaller respiratory spiracles were found, as well as a deformed small posterior end with hypogenesis of the posterior respiratory spiracles. Thus, disturbed growth and development of carrion flies found at a crime scene could indicate pesticide poisoning, such as aluminum phosphide.


Subject(s)
Diptera , Forensic Entomology , Aluminum Compounds , Animals , Calliphoridae , Larva , Phosphines , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL