Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
BMC Vet Res ; 16(1): 349, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967666

ABSTRACT

BACKGROUND: The use of zinc oxide in the form of nanoparticles (ZnO-NPs) is of great benefit due to its potent effectiveness and higher bioavailability compared to zinc oxide. This study aimed to investigate the impact of dietary inclusion of different doses of ZnO-NPs on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. Eighty Japanese quails (Coturnix japonica) (45 days old) were randomly divided into four groups (20 birds for each) with 4 replicates (5 birds each). Birds in the first group were fed a basal diet alone and served as a control (C). Birds in groups 2-4 were fed the basal diet supplemented with ZnO-NPs at doses of 15 mg/kg, 30 mg/kg and 60 mg/kg for a period of 60 days. At the end of the experiment, all birds were sacrificed to collect blood in a plain vacutainer, whereas liver and brain tissues were stored frozen at -80 °C. The obtained sera were used for the analysis of selected biochemical parameters, whereas tissue homogenates were used for the estimation of zinc, oxidative stress biomarkers and gene expression of selected antioxidant enzymes and cytokines. RESULTS: ZnO-NPs (30 and 60 mg/kg) induced a significant decrease in serum triacylglycerol (TAG) compared to the control. ZnO-NPs did not affect the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein, albumin, globulin and tissue zinc concentrations but reduced the malondialdehyde (MDA) levels compared to the control. The liver retained a higher zinc concentration than that of brain tissue. In a dose-dependent manner, ZnO-NPs upregulated the mRNA levels of antioxidant enzymes (superoxide dismutase: SOD1; catalase: CAT; glutathione peroxidase-1: GPX 1) and pro-inflammatory cytokines (interferon α: IFN-α; interleukin 6: IL-6) in liver and brain tissues. CONCLUSION: The current study suggests the inclusion of ZnO-NPs, particularly 60 mg/kg, in the diet of Japanese quails to improve antioxidant and immune status.


Subject(s)
Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Animals , Antioxidants/metabolism , Biomarkers/blood , Brain Chemistry , Coturnix , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Lipid Peroxidation , Liver/chemistry , Oxidative Stress
2.
BMC Vet Res ; 15(1): 83, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30849975

ABSTRACT

BACKGROUND: Limited data are available about the kinetics of mRNA expressions of Heat shock proteins (HSPs) and heat shock factors (HSFs) in the thermally manipulated (TM) broiler chicks during acute heat stress. Therefore, this study aimed to investigate effects of thermal manipulation (TM) of broiler chicken during embryonic days (ED) 12-18 on the basal and dynamics mRNA expression of heat shock proteins (HSP108 and HSP90) and heat shock factors (HSF-1 and HSF-2) in the muscle tissue during late embryogenesis, first week of life and during heat stress (HS) on post-hatch days 14 and 28. One thousand and five hundred fertile Ross 315 broiler eggs were randomly allocated to five groups: control group (37.8 °C), TM1 (38.5 °C for 18 h), TM2 (39 °C for 18 h), TM3 (39.5 °C for 18 h) and TM4 (40 °C for 18 h). Chicks from each treatment group were then randomly sub-divided into two further treatment groups, naïve and thermal challenged (TC). On post-hatch days 14 and 28, thirty chicks from each TC group were subjected to heat stress (41 °C for 6 h), while naïve chicks of each group (n = 30) were kept under regular conditions. The response of chicks to heat stress was investigated by evaluating the change in mRNA expressions of HSP108, HSP90, HSF-1 and HSF-2 in muscle tissue after 1, 3 and 5 h of heat stress. RESULTS: When compared to the control group, TM resulted in significant increases in the basal mRNA expression of HSPs and HSFs during embryogenesis and altered their dynamic expressions in the muscle tissue after heat stress on post-hatch days 14 and 28. CONCLUSION: the current study indicated short- and long-term enhancement of HSPs and HSFs gene expression which was associated with acquisition of improved thermotolerance in thermally manipulated chicks.


Subject(s)
Chick Embryo/metabolism , Chickens/metabolism , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Animals , Chickens/genetics , Embryonic Development , Gene Expression , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/genetics , Muscles/embryology , Muscles/metabolism , RNA, Messenger , Thermotolerance/physiology
3.
BMC Vet Res ; 15(1): 166, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31122240

ABSTRACT

BACKGROUND: In broilers chickens, the molecular bases for promoting muscle development and growth requires further investigation. Therefore, the current study aimed to investigate the effects of daily thermal manipulation (TM) during embryonic days (ED) 12 to 18 on body, carcass and internal organ weights as well as on the expression of muscle growth markers genes during late embryogenesis and post-hatch days. 1500 fertile Cobb eggs were divided into five groups. The first group was a control group and incubated at 37.8°C. The other four groups were thermally manipulated (TM) and exposed to 38.5°C (TM1), 39°C (TM2), 39.5°C (TM3) and 40°C (TM4) daily for 18 h, respectively, with a relative humidity of 56%. Body weights (BW) from ED 12 to 18 and on post-hatch days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28 and 35 were recorded. mRNA expression levels of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (Myogenic Differentiation Antigen; MyoD), Myogenin, Pax7, and PCNA) during ED 12 to 18 and on post-hatch days 1, 3, 5, 7, 14 were analyzed. On post-hatch day 35, the carcass and internal organ weights have been also evaluated. RESULTS: TM during certain days of embryogenesis (ED 12 to 18) did not affect the BW of broilers during their embryonic lives. However, TM, particularly TM1 and TM2, significantly increased BW, carcass and internal weights of hatched chicks near to the marketing age (post-hatch days 28 and 35). Most of TM protocols induced up-regulation of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (MyoD, Myogenin, Pax7, and PCNA) during embryonic life (ED 12 to 18) and on post-hatch days. CONCLUSION: Among the various TM conditions, it seems that,TM1 and TM2 induced a significant increase in BW, carcass and internal weights of hatched chicks near to the marketing age. This increase in BW induced presumably via up-regulation of muscle growth factor genes and muscle growth markers genes during embryonic life (ED 12 to 18) and on post-hatch days. Both protocols (TM1 and TM2) can be used in real-world applications of poultry industry for maximum benefit.


Subject(s)
Chickens/physiology , Hot Temperature , Muscle Development/physiology , Animals , Body Weight/physiology , Chick Embryo , Chickens/genetics , Chickens/growth & development , Embryonic Development/physiology , Genetic Markers , Muscle Development/genetics , Organ Size/physiology , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL