Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Anaerobe ; 48: 135-143, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28823884

ABSTRACT

This study aims to demonstrate the recycling of food processing wastes as a low cost-effective substrate for acetone - butanol - ethanol (ABE) production. Potato peels and cheese whey were utilized during fermentation with eight local Clostridium strains in addition to the commercial strain, C. acetobutylicum ATCC 824 for ABE and organic acids production. From potato peels, Clostridium beijerinckii ASU10 produced the highest ABE production (17.91 g/l) representing 61.3% butanol (10.98 g/l), 33.6% acetone (6.02 g/l) and 5.1% ethanol (0.91 g/l). While, C. chauvoei ASU12 showed the highest acid production (8.15 g/l) including 5.50 and 2.61 g/l acetic and butyric acids, respectively. Use of cheese whey as fermentable substrate exhibited a substantial increase in ethanol ratio and decrease in butanol ratio compared to those produced from potato peels. Clostridium beijerinckii ASU5 produced the highest ABE concentration (7.13 g/l) representing 50.91% butanol (3.63 g/l), 35.34% acetone (2.52 g/l) and 13.74% ethanol (0.98 g/l). The highest acid production (8.00 g/l) was obtained by C. beijerinckii ASU5 representing 4.89 and 3.11 g/l for acetic and butyric acid, respectively. Supplementation of potato peels with an organic nitrogen source showed NH4NO3 promoted ABE production more than yeast extract. In conclusion, this study introduced an ecofriendly and economical practice for utilization of food processing wastes (renewable substrates as potato peels and cheese whey) for biofuel production using various Clostridium strains.


Subject(s)
Biofuels , Biotransformation , Food Handling , Waste Products , Acetone/metabolism , Biodegradation, Environmental , Butanols/metabolism , Ethanol/metabolism , Fermentation , Solanum tuberosum/metabolism , Starch/metabolism , Zea mays
2.
Anaerobe ; 2017 Jul 02.
Article in English | MEDLINE | ID: mdl-28679108

ABSTRACT

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.

3.
Anaerobe ; 32: 77-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25557787

ABSTRACT

One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production.


Subject(s)
Acetone/metabolism , Butanols/metabolism , Clostridium/metabolism , Ethanol/metabolism , Fermentation , Biofuels , Clostridium/classification , Clostridium/genetics , Clostridium/isolation & purification , Genotype , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology
4.
Arch Environ Contam Toxicol ; 66(2): 303-15, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24366585

ABSTRACT

The goal of this study was to investigate the response of activation of Rhizobium tibeticum with mixture of hesperetin and apigenin to improve growth, nodulation, and nitrogen fixation of fenugreek grown under cobalt (Co) stress. The current study showed that high concentrations of Co-induced noxious effects on rhizobial growth, nod gene expression, nodulation, phenylalanine ammonia-lyase (PAL) and glutamine synthetase (GS) activities, total flavonoid content, and nitrogen fixation. Addition of a mixture of hesperetin and apigenin to growth medium supplemented with different concentrations of Co significantly increased bacterial growth. PAL activity of roots grown hydroponically at 100 mg kg(-1) Co and inoculated with induced R. tibeticum was significantly increased compared with plants receiving uninduced R. tibeticum. Total flavonoid content of root exudates of plants inoculated with activated R. tibeticum was significantly increased compared with inoculated plants with unactivated R. tibeticum or uninoculated plants at variant Co dosages. Application of 50 mg kg(-1) Co significantly increased nodulation, GS, nitrogenase activity, and biomass of plants inoculated with either or uninduced R. tibeticum. The total number and fresh mass of nodules, nitrogenase activity, and biomass of plants inoculated with induced cells grown in soil treated with 100 and 200 mg kg(-1) Co were significantly increased compared with plants inoculated with uninduced cells. Induced R. tibeticum with flavonoids significantly alleviates the adverse effect of Co on nod gene expression and therefore enhances nitrogen fixation. Induction of R. tibeticum with compatible flavonoids could be of practical importance in augmenting growth and nitrogen fixation of fenugreek grown in a Co-contaminated agroecosystem.


Subject(s)
Cobalt/toxicity , Plant Roots/growth & development , Rhizobium/physiology , Soil Pollutants/toxicity , Trigonella/physiology , Flavonoids/metabolism , Nitrogen Fixation , Plant Root Nodulation/physiology , Plant Roots/microbiology , Soil/chemistry , Symbiosis , Trigonella/microbiology
5.
Microbiol Res ; 169(1): 49-58, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-23920230

ABSTRACT

Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5-8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is clear that the dual inoculation with Rhizobium and AMF biofertilizer is more effective for promoting growth of faba bean grown in alkaline soils than the individual treatment, reflecting the existence of synergistic relationships among the inoculants.


Subject(s)
Fungi/physiology , Mycorrhizae/physiology , Plant Development , Rhizobium leguminosarum/physiology , Symbiosis , Vicia faba/growth & development , Vicia faba/microbiology , Alkalies/toxicity , Egypt , Fungi/isolation & purification , Microbial Interactions , Mycorrhizae/isolation & purification , Nitrogen Fixation , Plant Root Nodulation , Rhizobium leguminosarum/drug effects , Rhizobium leguminosarum/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL