Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
2.
Nature ; 572(7767): 67-73, 2019 08.
Article in English | MEDLINE | ID: mdl-31043743

ABSTRACT

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Animals , Cerebellar Neoplasms/classification , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/metabolism , Child , Female , Fetus/cytology , Glioma/classification , Glioma/genetics , Glioma/pathology , Humans , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Time Factors , Transcriptome/genetics
3.
Nat Commun ; 13(1): 4178, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853870

ABSTRACT

Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.


Subject(s)
Cerebrum , Glioma , Animals , Brain , Child , Glioma/genetics , Humans , Mice , Neurogenesis , Telencephalon
4.
Nat Commun ; 10(1): 5829, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31863004

ABSTRACT

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously.


Subject(s)
Cerebellar Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Hedgehog Proteins/antagonists & inhibitors , Medulloblastoma/genetics , Signal Transduction/genetics , Anilides/pharmacology , Anilides/therapeutic use , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Female , Gain of Function Mutation , Hedgehog Proteins/genetics , Humans , Male , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Mice, Transgenic , Molecular Targeted Therapy/methods , MyoD Protein/genetics , Neoplastic Stem Cells/drug effects , Pyridines/pharmacology , Pyridines/therapeutic use , RNA-Seq , Signal Transduction/drug effects , Single-Cell Analysis , Smoothened Receptor/genetics , Transcription Factor HES-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL