Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Blood ; 141(4): 335-344, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36040484

ABSTRACT

Children with sickle cell disease (SCD) demonstrate cerebral hemodynamic stress and are at high risk of strokes. We hypothesized that curative hematopoietic stem cell transplant (HSCT) normalizes cerebral hemodynamics in children with SCD compared with pre-transplant baseline. Whole-brain cerebral blood flow (CBF) and oxygen extraction fraction (OEF) were measured by magnetic resonance imaging 1 to 3 months before and 12 to 24 months after HSCT in 10 children with SCD. Three children had prior overt strokes, 5 children had prior silent strokes, and 1 child had abnormal transcranial Doppler ultrasound velocities. CBF and OEF of HSCT recipients were compared with non-SCD control participants and with SCD participants receiving chronic red blood cell transfusion therapy (CRTT) before and after a scheduled transfusion. Seven participants received matched sibling donor HSCT, and 3 participants received 8 out of 8 matched unrelated donor HSCT. All received reduced-intensity preparation and maintained engraftment, free of hemolytic anemia and SCD symptoms. Pre-transplant, CBF (93.5 mL/100 g/min) and OEF (36.8%) were elevated compared with non-SCD control participants, declining significantly 1 to 2 years after HSCT (CBF, 72.7 mL/100 g per minute; P = .004; OEF, 27.0%; P = .002), with post-HSCT CBF and OEF similar to non-SCD control participants. Furthermore, HSCT recipients demonstrated greater reduction in CBF (-19.4 mL/100 g/min) and OEF (-8.1%) after HSCT than children with SCD receiving CRTT after a scheduled transfusion (CBF, -0.9 mL/100 g/min; P = .024; OEF, -3.3%; P = .001). Curative HSCT normalizes whole-brain hemodynamics in children with SCD. This restoration of cerebral oxygen reserve may explain stroke protection after HSCT in this high-risk patient population.


Subject(s)
Anemia, Sickle Cell , Hematopoietic Stem Cell Transplantation , Stroke , Humans , Child , Anemia, Sickle Cell/therapy , Stroke/prevention & control , Hemodynamics , Oxygen , Cerebrovascular Circulation
2.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38660712

ABSTRACT

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Subject(s)
Diabetic Nephropathies , Kidney , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Animals , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Kidney/physiopathology , Kidney/diagnostic imaging , Rats , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/diagnostic imaging , Renal Circulation , Humans , Homeostasis/physiology
3.
Magn Reson Med ; 92(3): 1048-1063, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38725383

ABSTRACT

PURPOSE: To introduce a novel deep model-based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k-space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. METHODS: SPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high-quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA-based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self-supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. RESULTS: We validate SPICER on both open-access datasets and experimentally collected data, showing that it can achieve state-of-the-art performance in highly accelerated data acquisition settings (up to 10 × $$ 10\times $$ ). Our results also highlight the importance of different modules of SPICER-including the DMBA, the CSM estimation, and the SPICER training loss-on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre-estimation methods especially when the ACS data is limited. CONCLUSION: Despite being trained on noisy undersampled data, SPICER can reconstruct high-quality images and CSMs in highly undersampled settings, which outperforms other self-supervised learning methods and matches the performance of the well-known E2E-VarNet trained on fully sampled ground-truth data.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Supervised Machine Learning , Brain/diagnostic imaging , Deep Learning , Phantoms, Imaging
4.
Magn Reson Med ; 88(5): 2285-2297, 2022 11.
Article in English | MEDLINE | ID: mdl-35713359

ABSTRACT

PURPOSE: CT is routinely used to detect cranial abnormalities in pediatric patients with head trauma or craniosynostosis. This study aimed to develop a deep learning method to synthesize pseudo-CT (pCT) images for MR high-resolution pediatric cranial bone imaging to eliminating ionizing radiation from CT. METHODS: 3D golden-angle stack-of-stars MRI were obtained from 44 pediatric participants. Two patch-based residual UNets were trained using paired MR and CT patches randomly selected from the whole head (NetWH) or in the vicinity of bone, fractures/sutures, or air (NetBA) to synthesize pCT. A third residual UNet was trained to generate a binary brain mask using only MRI. The pCT images from NetWH (pCTNetWH ) in the brain area and NetBA (pCTNetBA ) in the nonbrain area were combined to generate pCTCom . A manual processing method using inverted MR images was also employed for comparison. RESULTS: pCTCom (68.01 ± 14.83 HU) had significantly smaller mean absolute errors (MAEs) than pCTNetWH (82.58 ± 16.98 HU, P < 0.0001) and pCTNetBA (91.32 ± 17.2 HU, P < 0.0001) in the whole head. Within cranial bone, the MAE of pCTCom (227.92 ± 46.88 HU) was significantly lower than pCTNetWH (287.85 ± 59.46 HU, P < 0.0001) but similar to pCTNetBA (230.20 ± 46.17 HU). Dice similarity coefficient of the segmented bone was significantly higher in pCTCom (0.90 ± 0.02) than in pCTNetWH (0.86 ± 0.04, P < 0.0001), pCTNetBA (0.88 ± 0.03, P < 0.0001), and inverted MR (0.71 ± 0.09, P < 0.0001). Dice similarity coefficient from pCTCom demonstrated significantly reduced age dependence than inverted MRI. Furthermore, pCTCom provided excellent suture and fracture visibility comparable to CT. CONCLUSION: MR high-resolution pediatric cranial bone imaging may facilitate the clinical translation of a radiation-free MR cranial bone imaging method for pediatric patients.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Child , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Skull/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Magn Reson Med ; 88(2): 676-690, 2022 08.
Article in English | MEDLINE | ID: mdl-35344592

ABSTRACT

PURPOSE: We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan. METHODS: The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth. MRI-based MVFs were derived from either 2000 spokes (MoCo2000 , 5-6 min acquisition time) using a Fourier transform reconstruction or 200 spokes (MoCoP2P200 , 30-40 s acquisition time) using a deep-learning Phase2Phase (P2P) reconstruction and then incorporated into PET MoCo reconstruction. For six patients with hepatic lesions, the performance of PET MoCo was evaluated using quantitative metrics (SUVmax , SUVpeak , SUVmean , lesion volume) and a blinded radiological review on lesion conspicuity. RESULTS: MRI-assisted PET MoCo methods provided similar results to static scans across most lesions with varying TBRs in the phantom. Both MoCo2000 and MoCoP2P200 PET images had significantly higher SUVmax , SUVpeak , SUVmean and significantly lower lesion volume than non-motion-corrected (non-MoCo) PET images. There was no statistical difference between MoCo2000 and MoCoP2P200 PET images for SUVmax , SUVpeak , SUVmean or lesion volume. Both radiological reviewers found that MoCo2000 and MoCoP2P200 PET significantly improved lesion conspicuity. CONCLUSION: An MRI-assisted PET MoCo method was evaluated using the ground truth in a phantom study. In patients with hepatic lesions, PET MoCo images improved quantitative and qualitative metrics based on only 30-40 s of MRI motion modeling data.


Subject(s)
Deep Learning , Positron-Emission Tomography , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion , Positron-Emission Tomography/methods
6.
Magn Reson Med ; 85(6): 3318-3325, 2021 06.
Article in English | MEDLINE | ID: mdl-33497013

ABSTRACT

PURPOSE: To demonstrate a proof of concept for the measurement of myocardial oxygen extraction fraction (mOEF) by a cardiovascular magnetic resonance technique. METHODS: The mOEF measurement was performed using an electrocardiogram-triggered double-echo asymmetric spin-echo sequence with EPI readout. Seven healthy volunteers (22-37 years old, 5 females) were recruited and underwent the same imaging scans at rest on 2 different days for reproducibility assessment. Another 5 subjects (23-37 years old, 4 females) underwent cardiovascular magnetic resonance studies at rest and during a handgrip isometric exercise with a 25% of maximal voluntary contraction. Both mOEF and myocardial blood volume values were obtained in septal regions from respective maps. RESULTS: The reproducibility was excellent for the measurements of mOEF in septal myocardium (coefficient of variation: 3.37%) and moderate for myocardial blood volume (coefficient of variation: 19.7%). The average mOEF and myocardial blood volume of 7 subjects at rest were 0.61 ± 0.05 and 11.0 ± 4.3%, respectively. The mOEF agreed well with literature values that were measured by PET in healthy volunteers. In the exercise study, there was no significant change in mOEF (0.61 ± 0.06 vs 0.62 ± 0.07) or myocardial blood volume (12 ± 6% vs 13 ± 4%) from rest to exercise, as expected. CONCLUSION: The implemented cardiovascular magnetic resonance method shows potential for the quantitative assessment of mOEF in vivo. Future technical work is needed to improve image quality and to further validate mOEF measurements.


Subject(s)
Hand Strength , Myocardium , Adult , Female , Humans , Magnetic Resonance Imaging , Oxygen , Predictive Value of Tests , Reproducibility of Results , Young Adult
7.
Magn Reson Med ; 85(6): 3383-3393, 2021 06.
Article in English | MEDLINE | ID: mdl-33475200

ABSTRACT

PURPOSE: Sickle cell anemia is a blood disorder that alters the morphology and the oxygen affinity of the red blood cells. Cerebral oxygen extraction fraction measurements using quantitative BOLD contrast have been used for assessing inadequate oxygen delivery and the subsequent risk of ischemic stroke in sickle cell anemia. The BOLD signal in MRI studies relies on Δχdo , the bulk volume susceptibility difference between fully oxygenated and fully deoxygenated blood. Several studies have measured Δχdo for normal hemoglobin A (HbA). However, it is not known whether the value is different for sickle hemoglobin. In this study, Δχdo was measured for both HbA and sickle hemoglobin. METHODS: Six sickle cell anemia patients and 6 controls were recruited. Various blood oxygenation levels were achieved through in vivo manipulations to keep the blood close to its natural state. To account for the differences in oxygen affinity, Hill's equations were used to translate partial pressure of oxygen to oxygen saturation for HbA, sickle hemoglobin, and fetal hemoglobin (HbF) separately. The pH and PCO2 corrections were performed. Temperature and magnetic field drift were controlled for. A multivariate generalized linear mixed model with random participant effect was used. RESULTS: Assuming that Δχdo is similar for HbA and HbF and that ΔχmetHb is 5/4 of Δχdo for HbA, it was found that the Δχdo values for HbA and sickle hemoglobin were not statistically significantly different from each other. CONCLUSION: The same Δχdo value can be used for both types of hemoglobin in quantitative BOLD analysis.


Subject(s)
Hemoglobin A , Hemoglobin, Sickle , Hemoglobins , Humans , Oxygen , Oxyhemoglobins
8.
Ann Neurol ; 88(5): 995-1008, 2020 11.
Article in English | MEDLINE | ID: mdl-32869335

ABSTRACT

OBJECTIVE: Children with sickle cell disease (SCD) experience cognitive deficits even when unaffected by stroke. Using functional connectivity magnetic resonance imaging (MRI) as a potential biomarker of cognitive function, we tested our hypothesis that children with SCD would have decreased functional connectivity, and that children experiencing the greatest metabolic stress, indicated by elevated oxygen extraction fraction, would have the lowest connectivity. METHODS: We prospectively obtained brain MRIs and cognitive testing in healthy controls and children with SCD. RESULTS: We analyzed data from 60 participants (20 controls and 40 with sickle cell disease). There was no difference in global cognition or cognitive subdomains between cohorts. However, we found decreased functional connectivity within the sensory-motor, lateral sensory-motor, auditory, salience, and subcortical networks in participants with SCD compared with controls. Further, as white matter oxygen extraction fraction increased, connectivity within the visual (p = 0.008, parameter estimate = -0.760 [95% CI = -1.297, -0.224]), default mode (p = 0.012, parameter estimate = -0.417 [95% CI = -0.731, -0.104]), and cingulo-opercular (p = 0.009, parameter estimate = -0.883 [95% CI = -1.517, -0.250]) networks decreased. INTERPRETATION: We conclude that there is diminished functional connectivity within these anatomically contiguous networks in children with SCD compared with controls, even when differences are not seen with cognitive testing. Increased white matter oxygen extraction fraction was associated with decreased connectivity in select networks. These data suggest that elevated oxygen extraction fraction and disrupted functional connectivity are potentially presymptomatic neuroimaging biomarkers for cognitive decline in SCD. ANN NEUROL 2020;88:995-1008.


Subject(s)
Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/metabolism , Stress, Physiological , Adolescent , Anemia, Sickle Cell/physiopathology , Brain/diagnostic imaging , Brain Mapping , Child , Cognition , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neuropsychological Tests , Oxygen Consumption
9.
Blood ; 133(22): 2436-2444, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30858231

ABSTRACT

Chronic transfusion therapy (CTT) prevents stroke in selected patients with sickle cell anemia (SCA). We have shown that CTT mitigates signatures of cerebral metabolic stress, reflected by elevated oxygen extraction fraction (OEF), which likely drives stroke risk reduction. The region of highest OEF falls within the border zone, where cerebral blood flow (CBF) nadirs; OEF in this region was reduced after CTT. The neuroprotective efficacy of hydroxyurea (HU) remains unclear. To test our hypothesis that patients receiving HU therapy have lower cerebral metabolic stress compared with patients not receiving disease-modifying therapy, we prospectively obtained brain magnetic resonance imaging scans with voxel-wise measurements of CBF and OEF in 84 participants with SCA who were grouped by therapy: no disease-modifying therapy, HU, or CTT. There was no difference in whole-brain CBF among the 3 cohorts (P = .148). However, whole-brain OEF was significantly different (P < .001): participants without disease-modifying therapy had the highest OEF (median 42.9% [interquartile range (IQR) 39.1%-49.1%]), followed by HU treatment (median 40.7% [IQR 34.9%-43.6%]), whereas CTT treatment had the lowest values (median 35.3% [IQR 32.2%-38.9%]). Moreover, the percentage of white matter at highest risk for ischemia, defined by OEF greater than 40% and 42.5%, was lower in the HU cohort compared with the untreated cohort (P = .025 and P = .034 respectively), but higher compared with the CTT cohort (P = .018 and P = .029 respectively). We conclude that HU may offer neuroprotection by mitigating cerebral metabolic stress in patients with SCA, but not to the same degree as CTT.


Subject(s)
Anemia, Sickle Cell , Hydroxyurea/administration & dosage , Magnetic Resonance Imaging , Neuroprotective Agents/administration & dosage , Stress, Physiological/drug effects , Stroke , Adolescent , Adult , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Cerebrovascular Circulation/drug effects , Child , Female , Humans , Male , Oxygen Consumption/drug effects , Stroke/diagnostic imaging , Stroke/metabolism , Stroke/prevention & control
10.
Blood ; 131(9): 1012-1021, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29255068

ABSTRACT

Blood transfusions are the mainstay of stroke prevention in pediatric sickle cell anemia (SCA), but the physiology conferring this benefit is unclear. Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) are elevated in SCA, likely compensating for reduced arterial oxygen content (CaO2). We hypothesized that exchange transfusions would decrease CBF and OEF by increasing CaO2, thereby relieving cerebral oxygen metabolic stress. Twenty-one children with SCA receiving chronic transfusion therapy (CTT) underwent magnetic resonance imaging before and after exchange transfusions. Arterial spin labeling and asymmetric spin echo sequences measured CBF and OEF, respectively, which were compared pre- and posttransfusion. Volumes of tissue with OEF above successive thresholds (36%, 38%, and 40%), as a metric of regional metabolic stress, were compared pre- and posttransfusion. Transfusions increased hemoglobin (Hb; from 9.1 to 10.3 g/dL; P < .001) and decreased Hb S (from 39.7% to 24.3%; P < .001). Transfusions reduced CBF (from 88 to 82.4 mL/100 g per minute; P = .004) and OEF (from 34.4% to 31.2%; P < .001). At all thresholds, transfusions reduced the volume of peak OEF found in the deep white matter, a location at high infarct risk in SCA (P < .001). Reduction of elevated CBF and OEF, both globally and regionally, suggests that CTT mitigates infarct risk in pediatric SCA by relieving cerebral metabolic stress at patient- and tissue-specific levels.


Subject(s)
Anemia, Sickle Cell , Cerebrovascular Circulation , Erythrocyte Transfusion , Magnetic Resonance Angiography , Oxygen/blood , Adolescent , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/physiopathology , Anemia, Sickle Cell/therapy , Blood Flow Velocity , Child , Child, Preschool , Female , Humans , Male
12.
Stroke ; 47(1): 99-105, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26585394

ABSTRACT

BACKGROUND AND PURPOSE: We aimed to examine perfusion changes between 3 and 6 and 6 and 24 hours after stroke onset and their impact on tissue outcome. METHODS: Acute ischemic stroke patients underwent perfusion magnetic resonance imaging at 3, 6, and 24 hours after stroke onset and follow-up fluid-attenuated inversion recovery at 1 month to assess tissue fate. Mean transit time prolongation maps (MTTp=MTT-[median MTT of contralateral hemisphere]) were obtained at 3 (MTTp3 h), 6 (MTTp6 h), and 24 hours (MTTp24 h). Perfusion changes between 3 and 6 hours (ΔMTTp3_6) and 6 and 24 hours (ΔMTTp6_24) were calculated. A 2-step analysis was performed to evaluate the impact of ΔMTTp3_6 and ΔMTTp6_24 on tissue fate. First, a voxel-based multivariable logistic regression was performed for each individual patient with MTTp3 h, ΔMTTp3_6, and ΔMTT6_24 as independent variables and tissue fate as outcome. Second, Wilcoxon signed-rank tests on logistic regression coefficients were performed across patients to evaluate whether ΔMTTp3_6 and ΔMTT6_24 had significant impact on tissue fate for varying severities of baseline perfusion. RESULTS: Perfusion change was common during both time periods: 85% and 81% of patients had perfusion improvement during 3- to 6- and 6- and 24-hour time intervals, respectively. ΔMTT3_6 significantly influenced 1-month infarct probability across a wide range of baseline perfusion (MTTp 0-15 s). ΔMTT6_24 also impacted 1-month infarct probability, but its influence was restricted to tissue with milder baseline ischemia (MTTp 0-10 s). CONCLUSIONS: Brain tissue with mild to moderate ischemia can be salvaged by reperfusion even after 6 hours. Such tissue could be targeted for intervention beyond current treatment windows.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/surgery , Reperfusion/trends , Stroke/diagnosis , Stroke/surgery , Aged , Cerebral Infarction/diagnosis , Cerebral Infarction/surgery , Humans , Magnetic Resonance Angiography/trends , Middle Aged , Prospective Studies , Time Factors
13.
Magn Reson Med ; 76(1): 118-26, 2016 07.
Article in English | MEDLINE | ID: mdl-26228530

ABSTRACT

PURPOSE: A new T1 mapping method is proposed that is accurate, rapid, and robust to motion. Considering these features, the method is dubbed "T-One with Enhanced Robustness and Speed (TOWERS)." METHODS: TOWERS is composed of inversion recovery (IR) and saturation recovery (SR) acquisitions. In the IR acquisitions, a slice reordering scheme is used to sample all slices in an efficient manner, whereas the SR acquisitions serve as references for motion estimation. Furthermore, as opposed to the usual way of running generalized autocalibrating partially parallel acquisitions (GRAPPA) calibration only once at the beginning, GRAPPA coefficients are updated in the middle and at the end, and are later used for retrospectively correcting for motion artifacts. Finally, sub-voxel magnetization tracking is deployed to account for motion-induced signal evolution changes. RESULTS: Whole-brain T1 mapping data with a spatial resolution of 1.56 × 1.56 × 2.00 mm can be collected within 2.5 min. TOWERS and the gold-standard IR method agree well in phantom, while high reproducibility is achieved in vivo. High-quality T1 maps in the presence of severe motion show the robustness of the method. CONCLUSION: The proposed method, TOWERS, is shown to be rapid, accurate, and robust. Multiple GRAPPA calibrations and sub-voxel magnetization tracking make TOWERS unique. Magn Reson Med 76:118-126, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Algorithms , Brain/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
15.
J Cereb Blood Flow Metab ; : 271678X241237072, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436254

ABSTRACT

Abnormal oxygen extraction fraction (OEF), a putative biomarker of cerebral metabolic stress, may indicate compromised oxygen delivery and ischemic vulnerability in patients with sickle cell disease (SCD). Elevated OEF was observed at the tissue level across the brain using an asymmetric spin echo (ASE) MR method, while variable global OEFs were found from the superior sagittal sinus (SSS) using a T2-relaxation-under-spin-tagging (TRUST) MRI method with different calibration models. In this study, we aimed to compare the average ASE-OEF in the SSS drainage territory and TRUST-OEF in the SSS from the same SCD patients and healthy controls. 74 participants (SCD: N = 49; controls: N = 25) underwent brain MRI. TRUST-OEF was quantified using the Lu-bovine, Bush-HbA and Li-Bush-HbS models. ASE-OEF and TRUST-OEF were significantly associated in healthy controls after controlling for hematocrit using the Lu-bovine or the Bush-HbA model. However, no association was found between ASE-OEF and TRUST-OEF in patients with SCD using either the Bush-HbA or the Li-Bush-HbS model. Plausible explanations include a discordance between spatially volume-averaged oxygenation brain tissue and flow-weighted volume-averaged oxygenation in SSS or sub-optimal calibration in SCD. Further work is needed to refine and validate non-invasive MR OEF measurements in SCD.

16.
Article in English | MEDLINE | ID: mdl-38991771

ABSTRACT

BACKGROUND AND PURPOSE: CT imaging exposes patients to ionizing radiation. MR imaging is radiation free but previously has not been able to produce diagnostic-quality images of bone on a timeline suitable for clinical use. We developed automated motion correction and use deep learning to generate pseudo-CT images from MR images. We aim to evaluate whether motion-corrected pseudo-CT produces cranial images that have potential to be acceptable for clinical use. MATERIALS AND METHODS: Patients younger than age 18 who underwent CT imaging of the head for either trauma or evaluation of cranial suture patency were recruited. Subjects underwent a 5-minute golden-angle stack-of-stars radial volumetric interpolated breath-hold MR image. Motion correction was applied to the MR imaging followed by a deep learning-based method to generate pseudo-CT images. CT and pseudo-CT images were evaluated and, based on indication for imaging, either presence of skull fracture or cranial suture patency was first recorded while viewing the MR imaging-based pseudo-CT and then recorded while viewing the clinical CT. RESULTS: A total of 12 patients underwent CT and MR imaging to evaluate suture patency, and 60 patients underwent CT and MR imaging for evaluation of head trauma. For cranial suture patency, pseudo-CT had 100% specificity and 100% sensitivity for the identification of suture closure. For identification of skull fractures, pseudo-CT had 100% specificity and 90% sensitivity. CONCLUSIONS: Our early results show that automated motion-corrected and deep learning-generated pseudo-CT images of the pediatric skull have potential for clinical use and offer a high level of diagnostic accuracy when compared with standard CT scans.

17.
Stroke ; 44(8): 2292-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23743978

ABSTRACT

BACKGROUND AND PURPOSE: Alterations of cerebral glucose metabolism are well anticipated during cerebral ischemia. However, detailed spatiotemporal characteristics of disturbed cerebral glucose metabolism during acute ischemia remain largely elusive. This study aims to delineate spatiotemporal distributions of [18]F-2-fluoro-2-deoxy-D-glucose (FDG) uptake using positron emission tomography imaging, particularly at the peri-ischemic zone, and its correlation with tissue outcome. METHODS: The intraluminal suture middle cerebral artery occlusion model was used to induce focal cerebral ischemia in rats (n=48). All animals underwent sequential MRI and FDG positron emission tomography imaging at different times (30-150 minutes) after middle cerebral artery occlusion. MR and positron emission tomography images were coregistered. FDG uptake in the peri-ischemic zone was assessed in relation to middle cerebral artery occlusion duration, cerebral blood flow, apparent diffusion coefficient, and 24-hour T2 lesions. RESULTS: Elevated FDG uptake was consistently observed at the peri-ischemic zone surrounding the presumed ischemic core with low FDG uptake. Both the spatial volume and the uptake level of the hyper-uptake region were inversely correlated with the duration of middle cerebral artery occlusion. The hyper-uptake regions exhibited a mild reduction of cerebral blood flow (28.2±3.2%) and apparent diffusion coefficient (9.1±1.4%) when compared with that in the contralateral hemisphere. Colocalization analysis revealed that, with reperfusion, an average of 12.1±1.7% of the hyper-uptake volume was recruited into final infarction. CONCLUSIONS: Elevated FDG uptake at the peri-ischemic zone is consistently observed during acute cerebral ischemia. The region with elevated FDG uptake likely reflects viable tissues that can be salvaged with reperfusion. Therefore, acute FDG positron emission tomography imaging might hold promise in the management of patients with acute stroke.


Subject(s)
Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/physiopathology , Positron-Emission Tomography/methods , Animals , Brain Ischemia/diagnostic imaging , Brain Ischemia/metabolism , Carotid Artery, Internal/surgery , Cerebrovascular Circulation/physiology , Disease Models, Animal , Fluorodeoxyglucose F18/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/metabolism , Magnetic Resonance Imaging , Male , Positron-Emission Tomography/instrumentation , Rats , Rats, Long-Evans , Reperfusion/methods , Time Factors
18.
Med Phys ; 50(10): 6163-6176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37184305

ABSTRACT

BACKGROUND: MRI has a rapidly growing role in radiation therapy (RT) for treatment planning, real-time image guidance, and beam gating (e.g., MRI-Linac). Free-breathing 4D-MRI is desirable in respiratory motion management for therapy. Moreover, high-quality 3D-MRIs without motion artifacts are needed to delineate lesions. Existing MRI methods require multiple scans with lengthy acquisition times or are limited by low spatial resolution, contrast, and signal-to-noise ratio. PURPOSE: We developed a novel method to obtain motion-resolved 4D-MRIs and motion-integrated 3D-MRI reconstruction using a single rapid (35-45 s scan on a 0.35 T MRI-Linac. METHODS: Golden-angle radial stack-of-stars MRI scans were acquired from a respiratory motion phantom and 12 healthy volunteers (n = 12) on a 0.35 T MRI-Linac. A self-navigated method was employed to detect respiratory motion using 2000 (acquisition time = 5-7 min) and the first 200 spokes (acquisition time = 35-45 s). Multi-coil non-uniform fast Fourier transform (MCNUFFT), compressed sensing (CS), and deep-learning Phase2Phase (P2P) methods were employed to reconstruct motion-resolved 4D-MRI using 2000 spokes (MCNUFFT2000) and 200 spokes (CS200 and P2P200). Deformable motion vector fields (MVFs) were computed from the 4D-MRIs and used to reconstruct motion-corrected 3D-MRIs with the MOtion Transformation Integrated forward-Fourier (MOTIF) method. Image quality was evaluated quantitatively using the structural similarity index measure (SSIM) and the root mean square error (RMSE), and qualitatively in a blinded radiological review. RESULTS: Evaluation using the respiratory motion phantom experiment showed that the proposed method reversed the effects of motion blurring and restored edge sharpness. In the human study, P2P200 had smaller inaccuracy in MVFs estimation than CS200. P2P200 had significantly greater SSIMs (p < 0.0001) and smaller RMSEs (p < 0.001) than CS200 in motion-resolved 4D-MRI and motion-corrected 3D-MRI. The radiological review found that MOTIF 3D-MRIs using MCNUFFT2000 exhibited the highest image quality (scoring > 8 out of 10), followed by P2P200 (scoring > 5 out of 10), and then motion-uncorrected (scoring < 3 out of 10) in sharpness, contrast, and artifact-freeness. CONCLUSIONS: We have successfully demonstrated a method for respiratory motion management for MRI-guided RT. The method integrated self-navigated respiratory motion detection, deep-learning P2P 4D-MRI reconstruction, and a motion integrated reconstruction (MOTIF) for 3D-MRI using a single rapid MRI scan (35-45 s) on a 0.35 T MRI-Linac system.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Motion , Magnetic Resonance Imaging/methods , Respiration , Phantoms, Imaging
19.
IEEE Trans Med Imaging ; 41(9): 2371-2384, 2022 09.
Article in English | MEDLINE | ID: mdl-35344490

ABSTRACT

Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.


Subject(s)
Magnetic Resonance Imaging , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
20.
J Neurosurg Pediatr ; : 1-6, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35453112

ABSTRACT

OBJECTIVE: Head trauma is the most common indication for a CT scan. In this pilot study, the authors assess the feasibility of a 5-minute high-resolution 3D golden-angle (GA) stack-of-stars radial volumetric interpolated breath-hold examination (VIBE) MRI sequence (GA-VIBE) to obtain clinically acceptable cranial bone images and identify cranial vault fractures compared to CT. METHODS: Patients younger than 18 years of age presenting after head trauma were eligible for the study. Three clinicians reviewed and assessed 1) slice-by-slice volumetric CT and inverted MR images, and 2) 3D reconstructions obtained from inverted MR images and the gold standard (CT). For each image set, reviewers noted on 5-point Likert scales whether they recommended that a repeat scan be performed and the presence or absence of cranial vault fractures. RESULTS: Thirty-one patients completed MRI after a clinical head CT scan was performed. Based on CT imaging, 8 of 31 patients had cranial fractures. Two of 31 patients were sedated as part of their clinical MRI scan. In 30 (97%) of 31 MRI reviews, clinicians agreed (or strongly agreed) that the image quality was acceptable for clinical diagnosis. Overall, comparing MRI to acceptable gold-standard CT, sensitivity and specificity of fracture detection were 100%. Furthermore, there were no discrepancies between CT and MRI in classification of fracture type or location. CONCLUSIONS: When compared with the gold standard (CT), the volumetric and 3D reconstructed images using the GA-VIBE sequence were able to produce clinically acceptable cranial images with excellent ability to detect cranial vault fractures.

SELECTION OF CITATIONS
SEARCH DETAIL