Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Exp Lung Res ; 50(1): 96-105, 2024.
Article in English | MEDLINE | ID: mdl-38625585

ABSTRACT

Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Female , Animals , Swine , Oleic Acid , Tumor Necrosis Factor-alpha , Interleukin-6 , Cytokines , Acute Lung Injury/chemically induced , Respiratory Distress Syndrome/chemically induced
2.
Exp Physiol ; 108(8): 1047-1056, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37170828

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the relationship between prostacyclin and cerebrovascular reactivity to hypercapnia before and after administration of a cyclooxygenase inhibitor, indomethacin, in healthy young and older adults? What is the main finding and importance? Serum prostacyclin was not related to cerebrovascular reactivity to hypercapnia before or after administration of indomethacin. However, in older adults, serum prostacyclin was related to the magnitude of change in cerebrovascular reactivity from before to after indomethacin administration. This suggests that older adults with higher serum prostacyclin may rely more on cyclooxygenase products to mediate cerebrovascular reactivity. ABSTRACT: Platelet activation may contribute to age-related cerebrovascular dysfunction by interacting with the endothelial cells that regulate the response to vasodilatory stimuli. This study evaluated the relationship between a platelet inhibitor, prostacyclin, and cerebrovascular reactivity (CVR) in healthy young (n = 35; 25 ± 4 years; 17 women, 18 men) and older (n = 12; 62 ± 2 years; 8 women, 4 men) adults, who were not daily aspirin users, before and after cyclooxygenase inhibition. Prostacyclin was determined by levels of 6-keto-prostaglandin F1α (6-keto PGF1α) in the blood. CVR was assessed by measuring the middle cerebral artery blood velocity response to hypercapnia using transcranial Doppler ultrasound before (CON) and 90 min after cyclooxygenase inhibition with indomethacin (INDO). In young adults, there were no associations between prostacyclin and middle cerebral artery CVR during CON (r = -0.14, P = 0.415) or INDO (r = 0.27, P = 0.118). In older adults, associations between prostacyclin and middle cerebral artery CVR during CON (r = 0.53, P = 0.075) or INDO (r = -0.45, P = 0.136) did not reach the threshold for significance. We also evaluated the relationship between prostacyclin and the change in CVR between conditions (ΔCVR). We found no association between ΔCVR and prostacyclin in young adults (r = 0.27, P = 0.110); however, in older adults, those with higher baseline prostacyclin levels demonstrated significantly greater ΔCVR (r = -0.74, P = 0.005). In conclusion, older adults with higher serum prostacyclin, a platelet inhibitor, may rely more on cyclooxygenase products for cerebrovascular reactivity to hypercapnia.


Subject(s)
Epoprostenol , Hypercapnia , Male , Young Adult , Humans , Female , Aged , Epoprostenol/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Prostaglandin-Endoperoxide Synthases , Endothelial Cells , Indomethacin/pharmacology , Prostaglandins I/pharmacology , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology , Carbon Dioxide
3.
Am J Physiol Heart Circ Physiol ; 322(1): H25-H35, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34738833

ABSTRACT

Central adiposity is associated with greater sympathetic support of blood pressure. ß-adrenergic receptors (ß-AR) buffer sympathetically mediated vasoconstriction and ß-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized ß-AR vasodilation would be lower in obese compared with normal weight adults. Because ß-AR vasodilation in normal weight adults is limited by cyclooxygenase (COX) restraint of nitric oxide synthase (NOS), we further explored the contributions of COX and NOS to ß-AR vasodilation in this cohort. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured and forearm vascular conductance (FVC) was calculated (FVC = FBF/MAP). The rise in FVC from baseline (ΔFVC) was quantified during graded brachial artery infusion of isoproterenol (Iso, 1-12 ng/100 g/min) in normal weight (n = 36) and adults with obesity (n = 22) (18-40 yr old). In a subset of participants, Iso-mediated vasodilation was examined before and during inhibition of NOS [NG-monomethyl-l-arginine (l-NMMA)], COX (ketorolac), and NOS + COX (l-NMMA + ketorolac). Iso-mediated increases in FVC did not differ between groups (P = 0.57). l-NMMA attenuated Iso-mediated ΔFVC in normal weight (P = 0.03) but not adults with obesity (P = 0.27). In normal weight adults, ketorolac increased Iso-mediated ΔFVC (P < 0.01) and this response was lost with concurrent l-NMMA (P = 0.67). In contrast, neither ketorolac (P = 0.81) nor ketorolac + l-NMMA (P = 0.40) altered Iso-mediated ΔFVC in adults with obesity. Despite shifts in COX and NOS, ß-AR vasodilation is preserved in young adults with obesity. These data highlight the presence of a compensatory shift in microvascular control mechanisms in younger humans with obesity.NEW & NOTEWORTHY We examined ß-adrenergic receptor-mediated vasodilation in skeletal muscle of humans with obesity and normal weight. Results show that despite shifts in the contribution of cyclooxygenase and nitric oxide synthase, ß-adrenergic-mediated vasodilation is relatively preserved in young, otherwise healthy adults with obesity. These data highlight the presence of subclinical changes in microvascular control mechanisms early in the obesity process and suggest duration of obesity and/or the addition of primary aging may be necessary for overt dysfunction.


Subject(s)
Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Obesity/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Vasodilation , Adrenergic beta-Agonists/pharmacology , Adult , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/physiology , Cyclooxygenase Inhibitors/pharmacology , Female , Humans , Isoproterenol/pharmacology , Ketorolac/pharmacology , Male , Nitric Oxide Synthase Type III/antagonists & inhibitors , Obesity/physiopathology , Receptors, Adrenergic, beta/metabolism , omega-N-Methylarginine/pharmacology
4.
J Physiol ; 599(22): 4973-4989, 2021 11.
Article in English | MEDLINE | ID: mdl-34587648

ABSTRACT

The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.


Subject(s)
Cerebrovascular Circulation , Nitric Oxide Synthase , Regional Blood Flow , omega-N-Methylarginine , Adult , Female , Humans , Male , Nitric Oxide , Nitric Oxide Synthase/antagonists & inhibitors , Perfusion , Single-Blind Method , Young Adult , omega-N-Methylarginine/pharmacology
5.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R208-R219, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34161746

ABSTRACT

Structural and functional changes in the cerebral vasculature occur with advancing age, which may lead to impaired neurovascular coupling (NVC) and cognitive decline. Cyclooxygenase (COX) inhibition abolishes age-related differences in cerebrovascular reactivity, but it is unclear if COX inhibition impacts NVC. The purpose of this study was to examine the influence of aging on NVC before and after COX inhibition. Twenty-three young (age = 25 ± 4 yr) and 21 older (age = 64 ± 5 yr) adults completed two levels of difficulty of the Stroop and n-back tests before and after COX inhibition. Middle cerebral artery blood velocity (MCAv) was measured using transcranial Doppler ultrasound and mean arterial blood pressure (MAP) was measured using a finger cuff. Hemodynamic variables were measured at rest and in response to cognitive challenges. During the Stroop test, older adults demonstrated a greater increase in MCAv (young: 2.2 ± 6.8% vs. older: 5.9 ± 5.8%; P = 0.030) and MAP (young: 2.0 ± 4.9% vs. older: 4.8 ± 4.9%; P = 0.036) compared with young adults. There were no age-related differences during the n-back test. COX inhibition reduced MCAv by 30% in young and 26% in older adults (P < 0.001 for both). During COX inhibition, there were no age-related differences in the percent change in MCAv or MAP in response to the cognitive tests. Our results show that older adults require greater increases in MCAv and MAP during a test of executive function compared with young adults and that any age-related differences in NVC were abolished during COX inhibition. Collectively, this suggests that aging is associated with greater NVC necessary to accomplish a cognitive task.


Subject(s)
Cerebrovascular Circulation/drug effects , Cognition , Cognitive Aging/psychology , Cyclooxygenase Inhibitors/pharmacology , Hemodynamics/drug effects , Indomethacin/pharmacology , Middle Cerebral Artery/drug effects , Neurovascular Coupling/drug effects , Adolescent , Adult , Age Factors , Aged , Executive Function , Female , Humans , Male , Memory, Short-Term , Middle Aged , Middle Cerebral Artery/diagnostic imaging , Stroop Test , Time Factors , Young Adult
6.
J Cardiovasc Magn Reson ; 23(1): 116, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34670573

ABSTRACT

BACKGROUND: Preterm birth has been linked to an elevated risk of heart failure and cardiopulmonary disease later in life. With improved neonatal care and survival, most infants born preterm are now reaching adulthood. In this study, we used 4D flow cardiovascular magnetic resonance (CMR) coupled with an exercise challenge to assess the impact of preterm birth on right heart flow dynamics in otherwise healthy adolescents and young adults who were born preterm. METHODS: Eleven young adults and 17 adolescents born preterm (< 32 weeks of gestation and < 1500 g birth weight) were compared to 11 young adult and 18 adolescent age-matched controls born at term. Stroke volume, cardiac output, and flow in the main pulmonary artery were quantified with 4D flow CMR. Kinetic energy and vorticity were measured in the right ventricle. All parameters were measured at rest and during exercise at a power corresponding to 70% VO2max for each subject. Multivariate linear regression was used to perform age-adjusted term-preterm comparisons. RESULTS: With exercise, stroke volume increased 10 ± 21% in term controls and decreased 4 ± 18% in preterm born subjects (p = 0.007). This resulted in significantly reduced capacity to increase cardiac output in response to exercise stress for the preterm group (58 ± 26% increase in controls, 36 ± 27% increase in preterm, p = 0.004). Elevated kinetic energy (KEterm = 71 ± 22 nJ, KEpreterm = 87 ± 38 nJ, p = 0.03) and vorticity (ωterm = 79 ± 16 s-1, ωpreterm = 94 ± 32 s-1, p = 0.01) during diastole in the right ventricle (RV) suggested altered RV flow dynamics in the preterm subjects. Streamline visualizations showed altered structure to the diastolic filling vortices in those born preterm. CONCLUSIONS: For the participants examined here, preterm birth appeared to result in altered right-heart flow dynamics as early as adolescence, especially during diastole. Future studies should evaluate whether the altered dynamics identified here evolves into cardiopulmonary disease later in life. Trial registration None.


Subject(s)
Premature Birth , Adolescent , Adult , Exercise Test , Female , Heart Ventricles , Humans , Infant, Newborn , Predictive Value of Tests , Pregnancy , Stroke Volume , Young Adult
7.
J Clin Monit Comput ; 34(1): 63-70, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30820870

ABSTRACT

ABSTARCT: To investigate the use of two-site regional oxygen saturations (rSO2) and end tidal carbon dioxide (EtCO2) to assess the effectiveness of resuscitation and return of spontaneous circulation (ROSC). Eight mechanically ventilated juvenile swine underwent 28 ventricular fibrillatory arrests with open cardiac massage. Cardiac massage was administered to achieve target pulmonary blood flow (PBF) as a percentage of pre-cardiac arrest baseline. Non-invasive data, including, EtCO2, cerebral rSO2 (C-rSO2) and renal rSO2 (R-rSO2) were collected continuously. Our data demonstrate the ability to measure both rSO2 and EtCO2 during CPR and after ROSC. During resuscitation EtCO2 had a strong correlation with goal CO with r = 0.83 (p < 0.001) 95% CI [0.67-0.92]. Both C-rSO2 and R-rSO2 had moderate and statistically significant correlation with CO with r = 0.52 (p = 0.003) 95% CI (0.19-0.74) and 0.50 (p = 0.004) 95% CI [0.16-0.73]. The AUCs for sudden increase of EtCO2, C-rSO2, and R-rSO2 at ROSC were 0.86 [95% CI, 0.77-0.94], 0.87 [95% CI, 0.8-0.94], and 0.98 [95% CI, 0.96-1.00] respectively. Measurement of continuous EtCO2 and rSO2 may be used during CPR to ensure effective chest compressions. Moreover, both rSO2 and EtCO2 may be used to detect ROSC in a swine pediatric ventricular fibrillatory arrest model.


Subject(s)
Capnography/methods , Heart Arrest/therapy , Oxygen/metabolism , Resuscitation/methods , Ventricular Fibrillation , Animals , Carbon Dioxide , Cardiopulmonary Resuscitation , Cerebrovascular Circulation/physiology , Disease Models, Animal , Heart Arrest/physiopathology , Hemodynamics , Monitoring, Physiologic , Oximetry , ROC Curve , Spectroscopy, Near-Infrared , Stress, Mechanical , Swine
8.
Am J Respir Crit Care Med ; 198(12): 1549-1558, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29944842

ABSTRACT

Rationale: Premature birth affects 10% of live births in the United States and is associated with alveolar simplification and altered pulmonary microvascular development. However, little is known about the long-term impact prematurity has on the pulmonary vasculature.Objectives: Determine the long-term effects of prematurity on right ventricular and pulmonary vascular hemodynamics.Methods: Preterm subjects (n = 11) were recruited from the Newborn Lung Project, a prospectively followed cohort at the University of Wisconsin-Madison, born preterm with very low birth weight (≤1,500 g; average gestational age, 28 wk) between 1988 and 1991. Control subjects (n = 10) from the same birth years were recruited from the general population. All subjects had no known adult cardiopulmonary disease. Right heart catheterization was performed to assess right ventricular and pulmonary vascular hemodynamics at rest and during hypoxic and exercise stress.Measurements and Main Results: Preterm subjects had higher mean pulmonary arterial pressures (mPAPs), with 27% (3 of 11) meeting criteria for borderline pulmonary hypertension (mPAP, 19-24 mm Hg) and 18% (2 of 11) meeting criteria for overt pulmonary hypertension (mPAP ≥ 25 mm Hg). Pulmonary vascular resistance and elastance were higher at rest and during exercise, suggesting a stiffer vascular bed. Preterm subjects were significantly less able to augment cardiac index or right ventricular stroke work during exercise. Among neonatal characteristics, total ventilatory support days was the strongest predictor of adult pulmonary pressure.Conclusions: Young adults born preterm demonstrate early pulmonary vascular disease, characterized by elevated pulmonary pressures, a stiffer pulmonary vascular bed, and right ventricular dysfunction, consistent with an increased risk of developing pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary/epidemiology , Lung/blood supply , Vascular Diseases/epidemiology , Adult , Age Factors , Female , Humans , Infant, Newborn , Infant, Premature , Male , Prospective Studies
9.
Eur J Appl Physiol ; 119(4): 857-866, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30635708

ABSTRACT

PURPOSE: The long-term implications of premature birth on autonomic nervous system (ANS) function are unclear. Heart rate recovery (HRR) following maximal exercise is a simple tool to evaluate ANS function and is a strong predictor of cardiovascular disease. Our objective was to determine whether HRR is impaired in young adults born preterm (PYA). METHODS: Individuals born between 1989 and 1991 were recruited from the Newborn Lung Project, a prospectively followed cohort of subjects born preterm weighing < 1500 g with an average gestational age of 28 weeks. Age-matched term-born controls were recruited from the local population. HRR was measured for 2 min following maximal exercise testing on an upright cycle ergometer in normoxia and hypoxia, and maximal aerobic capacity (VO2max) was measured. RESULTS: Preterms had lower VO2max than controls (34.88 ± 5.24 v 46.15 ± 10.21 ml/kg/min, respectively, p < 0.05), and exhibited slower HRR compared to controls after 1 and 2 min of recovery in normoxia (absolute drop of 20 ± 4 v 31 ± 10 and 41 ± 7 v 54 ± 11 beats per minute (bpm), respectively, p < 0.01) and hypoxia (19 ± 5 v 26 ± 8 and 39 ± 7 v 49 ± 13 bpm, respectively, p < 0.05). After adjusting for VO2max, HRR remained slower in preterms at 1 and 2 min of recovery in normoxia (21 ± 2 v 30 ± 2 and 42 ± 3 v 52 ± 3 bpm, respectively, p < 0.05), but not hypoxia (19 ± 3 v 25 ± 2 and 40 ± 4 v 47 ± 3 bpm, respectively, p > 0.05). CONCLUSIONS: Autonomic dysfunction as seen in this study has been associated with increased rates of cardiovascular disease in non-preterm populations, suggesting further study of the mechanisms of autonomic dysfunction after preterm birth.


Subject(s)
Exercise Test , Exercise/physiology , Heart Rate/physiology , Premature Birth/physiopathology , Autonomic Nervous System/physiopathology , Ergometry/methods , Exercise Tolerance/physiology , Female , Humans , Hypoxia/physiopathology , Infant, Newborn , Male , Pregnancy , Young Adult
10.
Biochem Biophys Res Commun ; 503(4): 2653-2658, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30093115

ABSTRACT

Mesenchymal stromal cell (MSC) derived exosomes mediate tissue protection and regeneration in many injuries and diseases by modulating cell protein production, protecting from apoptosis, inhibiting inflammation, and increasing angiogenesis. In the present study, daily intraperitoneal injection of MSC-derived exosomes protected alveolarization and angiogenesis in a newborn rat model of bronchopulmonary dysplasia (BPD) induced by 14 days of neonatal hyperoxia exposure (85% O2). Exosome treatment during hyperoxia prevented disruption of alveolar growth, increased small blood vessel number, and inhibited right heart hypertrophy at P14, P21, and P56. In vitro, exosomes significantly increased tube-like network formation by HUVEC, in part through a VEGF mediated mechanism. In summary, daily intraperitoneal injection of exosomes increased blood vessel number and size in the lung through pro-angiogenic mechanisms. MSC-derived exosomes therefore have both anti-inflammatory and pro-angiogenic mechanism to protect the lung from hyperoxia induced lung and heart disease associated with BPD.


Subject(s)
Bronchopulmonary Dysplasia/prevention & control , Cardiomegaly/prevention & control , Exosomes/physiology , Hyperoxia/prevention & control , Mesenchymal Stem Cells/chemistry , Vascular Endothelial Growth Factor A/genetics , Animals , Animals, Newborn , Bone Marrow Cells/chemistry , Bone Marrow Cells/cytology , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Disease Models, Animal , Exosomes/transplantation , Female , Gene Expression Regulation , Hyperoxia/genetics , Hyperoxia/metabolism , Hyperoxia/pathology , Injections, Intraperitoneal , Lung/blood supply , Lung/metabolism , Lung/pathology , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/genetics , Oxygen/toxicity , Pregnancy , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/agonists , Vascular Endothelial Growth Factor A/metabolism
11.
Catheter Cardiovasc Interv ; 92(1): 78-87, 2018 07.
Article in English | MEDLINE | ID: mdl-29602248

ABSTRACT

OBJECTIVE: To determine the consequences of an early catheter-based intervention on pulmonary artery (PA) growth and right ventricular (RV) myocardial function in an animal model of branch PA stenosis. BACKGROUND: Acute results and safety profiles of deliberate stent fracture within the pulmonary vasculature have been demonstrated. The long-term impact of early stent intervention and deliberate stent fracture on PA growth and myocardial function is not understood. METHODS: Implantation of small diameter stents was performed in a pig model of left PA stenosis at 6 weeks (10 kg) followed by dilations at 10 (35 kg) and 18 weeks (65 kg) with intent to fracture and implant large diameter stents. Hemodynamics, RV contractility, and 2D/3D angiography were performed with each intervention. The heart and pulmonary vasculature were histologically assessed. RESULTS: Stent fracture occurred in 9/12 and implantation of large diameter stents was successful in 10/12 animals with no PA aneurysms or dissections. The final stented PA segment and distal left PA branch origins equaled the corresponding PA diameters of sham controls. Growth of left PA immediately beyond the stent was limited and there was diffuse fibro-intimal proliferation within the distal left and right PA. RV contractility was diminished in the intervention group and the response to dobutamine occurred uniquely via increases in heart rate. CONCLUSIONS: Early stent intervention in this surgically created PA stenosis model was associated with improved growth of the distal PA vasculature but additional investigation of PA vessel physiology and impact on the developing heart are needed.


Subject(s)
Catheterization, Swan-Ganz/methods , Early Medical Intervention/methods , Myocardial Contraction , Pulmonary Artery/growth & development , Stenosis, Pulmonary Artery/therapy , Ventricular Function, Right , Animals , Animals, Newborn , Catheterization, Swan-Ganz/instrumentation , Disease Models, Animal , Hemodynamics , Prosthesis Design , Prosthesis Failure , Pulmonary Artery/pathology , Stenosis, Pulmonary Artery/diagnostic imaging , Stenosis, Pulmonary Artery/pathology , Stenosis, Pulmonary Artery/physiopathology , Stents , Sus scrofa , Time Factors
12.
Am J Respir Cell Mol Biol ; 56(5): 609-619, 2017 05.
Article in English | MEDLINE | ID: mdl-28129517

ABSTRACT

Prematurity complicates 12% of births, and young adults with a history of prematurity are at risk to develop right ventricular (RV) hypertrophy and impairment. The long-term risk for pulmonary vascular disease, as well as mechanisms of RV dysfunction and ventricular-vascular uncoupling after prematurity, remain poorly defined. Using an established model of prematurity-related lung disease, pups from timed-pregnant Sprague Dawley rats were randomized to normoxia or hyperoxia (fraction of inspired oxygen, 0.85) exposure for the first 14 days of life. After aging to 1 year in standard conditions, rats underwent hemodynamic assessment followed by tissue harvest for biochemical and histological evaluation. Aged hyperoxia-exposed rats developed significantly greater RV hypertrophy, associated with a 40% increase in RV systolic pressures. Although cardiac index was similar, hyperoxia-exposed rats demonstrated a reduced RV ejection fraction and significant RV-pulmonary vascular uncoupling. Hyperoxia-exposed RV cardiomyocytes demonstrated evidence of mitochondrial dysregulation and mitochondrial DNA damage, suggesting potential mitochondrial dysfunction as a cause of RV dysfunction. Aged rats exposed to postnatal hyperoxia recapitulate many features of young adults born prematurely, including increased RV hypertrophy and decreased RV ejection fraction. Our data suggest that postnatal hyperoxia exposure results in mitochondrial dysregulation that persists into adulthood with eventual RV dysfunction. Further evaluation of long-term mitochondrial function is warranted in both animal models of premature lung disease and in human adults who were born preterm.


Subject(s)
Hyperoxia/metabolism , Hyperoxia/physiopathology , Organelle Biogenesis , Ventricular Function, Right , Aging/pathology , Animals , Animals, Newborn , Autophagy , Body Weight , DNA Damage , DNA, Mitochondrial/metabolism , Female , Fibrosis , Gene Expression Profiling , Hemodynamics , Hyperoxia/complications , Hyperoxia/diagnostic imaging , Hypertrophy, Right Ventricular/diagnostic imaging , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/physiopathology , Male , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organ Size , Rats, Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 310(6): H756-64, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26747505

ABSTRACT

We tested the hypothesis that women exhibit greater vasodilator responses to ß-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to ß-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (ß-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). ß-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to ß-mediated vasodilation are not present. However, these data are the first to demonstrate ß-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , Isoproterenol/pharmacology , Ketorolac/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Vasodilation/drug effects , omega-N-Methylarginine/pharmacology , Adult , Female , Forearm/blood supply , Humans , Infusions, Intra-Arterial , Male , Microcirculation/drug effects , Microcirculation/physiology , Prostaglandin-Endoperoxide Synthases/physiology , Sex Factors , Ultrasonography, Doppler , Vasodilation/physiology
16.
Am J Physiol Regul Integr Comp Physiol ; 308(1): R28-33, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25394826

ABSTRACT

While there is an increased prevalence of stroke at altitude in individuals who are considered to be low risk for thrombotic events, it is uncertain how venous thrombi reach the brain. The patent foramen ovale (PFO) is a recruitable intracardiac shunt between the right and left atrium. We aimed to determine whether body position and oxygen tension affect blood flow through the PFO in healthy adults. We hypothesized that hypoxia and body positions that promote right atrial filling would independently recruit the PFO. Subjects with a PFO (n = 11) performed 11 trials, combining four different fractions of inhaled oxygen (FiO2) (1.0, 0.21, 0.15, and 0.10) and three positions (upright, supine, and 45° head down), with the exception of FiO2 = 0.10, while 45° head down. After 5 min in each position, breathing the prescribed oxygen tension, saline bubbles were injected into an antecubital vein and a four-chamber echocardiogram was obtained to evaluate PFO recruitment. We observed a high incidence of PFO recruitment in all conditions, with increased recruitment in response to severe hypoxia and some contribution of body position at moderate levels of hypoxia. We suspect that increased pulmonary vascular pressure, secondary to hypoxia-induced pulmonary vasoconstriction, increased right atrial pressure enough to recruit the PFO. Additionally, we hypothesize that the minor increase in breathing resistance that was added by the mouthpiece, used during experimental trials, affected intrathoracic pressure and venous return sufficiently to recruit the PFO.


Subject(s)
Foramen Ovale, Patent/complications , Hemodynamics , Hypoxia/complications , Oxygen/blood , Posture , Adolescent , Adult , Altitude , Arterial Pressure , Atrial Function, Right , Biomarkers/blood , Contrast Media/administration & dosage , Echocardiography , Female , Foramen Ovale, Patent/blood , Foramen Ovale, Patent/diagnostic imaging , Foramen Ovale, Patent/physiopathology , Head-Down Tilt , Humans , Hypoxia/blood , Hypoxia/physiopathology , Injections, Intravenous , Male , Pulmonary Artery/physiopathology , Pulmonary Circulation , Severity of Illness Index , Sodium Chloride/administration & dosage , Stroke/etiology , Stroke/physiopathology , Supine Position , Time Factors , Vascular Resistance , Vasoconstriction , Young Adult
17.
Eur J Appl Physiol ; 115(8): 1735-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25820143

ABSTRACT

PURPOSE: We hypothesized exercise vasodilation would be greater in women due to nitric oxide synthase (NOS) and cyclooxygenase (COX) signaling. METHODS: 45 healthy adults (23 women, W, 22 men, M, 26 ± 1 years) completed two 10-min trials of dynamic forearm exercise at 15 % intensity. Forearm blood flow (FBF; Doppler ultrasound), arterial pressure (brachial catheter), and forearm lean mass were measured to calculate relative forearm vascular conductance (FVCrel) = FBF 100 mmHg(-1) 100 g(-1) lean mass. Local intra-arterial infusion of L-NMMA or ketorolac acutely inhibited NOS and COX, respectively. In Trial 1, the first 5 min served as control exercise (CON), followed by 5 min of L-NMMA or ketorolac over the last 5 min of exercise. In Trial 2, the remaining drug was infused during 5-10 min, to achieve combined NOS-COX inhibition (double blockade, DB). RESULTS: Are mean ± SE. Women exhibited 29 % greater vasodilation in CON (ΔFVCrel, 19 ± 1 vs. 15 ± 1, p = 0.01). L-NMMA reduced ΔFVCrel (p < 0.001) (W: Δ -2.3 ± 1.3 vs. M: Δ -3.7 ± 0.8, p = 0.25); whereas, ketorolac modestly increased ΔFVCrel (p = 0.04) similarly between sexes (W: Δ 1.6 ± 1.1 vs. M: Δ 2.0 ± 1.6, p = 0.78). DB was also found to be similar between the sexes (p = 0.85). CONCLUSION: These data clearly indicate women produce a greater exercise vasodilator response. Furthermore, contrary to experiments in animal models, these data are the first to demonstrate vascular control by NOS and COX is similar between sexes.


Subject(s)
Exercise/physiology , Nitric Oxide Synthase/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Vasodilation/physiology , Adolescent , Adult , Cyclooxygenase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , Female , Forearm/diagnostic imaging , Forearm/physiology , Hemodynamics/physiology , Humans , Ketorolac/pharmacology , Male , Nitric Oxide Synthase/antagonists & inhibitors , Regional Blood Flow/physiology , Sex Characteristics , Ultrasonography , Vascular Resistance/physiology , Vasodilation/drug effects , Young Adult , omega-N-Methylarginine/pharmacology
18.
Am J Physiol Heart Circ Physiol ; 307(6): H840-7, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25038148

ABSTRACT

We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise - rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = -0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA.


Subject(s)
Antioxidants/administration & dosage , Ascorbic Acid/administration & dosage , Brachial Artery/drug effects , Exercise , Forearm/blood supply , Metabolic Syndrome/physiopathology , Obesity/physiopathology , Vasodilation/drug effects , Adolescent , Adult , Arterial Pressure , Biomarkers/blood , Blood Flow Velocity , Brachial Artery/physiopathology , C-Reactive Protein/metabolism , Female , Humans , Inflammation Mediators/blood , Infusions, Intra-Arterial , Male , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Obesity/blood , Obesity/diagnosis , Regional Blood Flow , Time Factors , Young Adult
19.
Toxicol Appl Pharmacol ; 278(1): 85-90, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24747805

ABSTRACT

In non-smokers, ozone (O3) inhalation causes decreases in forced expiratory volume (FEV1) and dead space (VD) and increases the slope of the alveolar plateau (SN). We previously described a population of smokers with a limited smoking history that had enhanced responsiveness to brief O3 boluses and aimed to determine if responsiveness to continuous exposure was also enhanced. Thirty smokers (19M, 11F, 24±4 years, 6±4 total years smoking,4±2 packs/week) and 30 non-smokers (17M, 13F, 25±6 years) exercised for 1h on a cycle ergometer while breathing 0.30ppm O3. Smokers and non-smokers were equally responsive in terms of FEV1 (-9.5±1.8% vs -8.7±1.9%). Smokers alone were responsive in terms of VD (-6.1±1.2%) and SN (9.1±3.4%). There was no difference in total delivered dose. Dead space ventilation (VD/VT) was not initially different between the two groups, but increased in the non-smokers (16.4±2.8%) during the exposure, suggesting that the inhaled dose may be distributed more peripherally in smokers. We also conclude that these cigarette smokers retain their airway responsiveness to O3 and, uniquely, experience changes in VD that lead to heterogeneity in airway morphometry and an increase in SN.


Subject(s)
Lung/drug effects , Ozone/adverse effects , Respiration/drug effects , Smoking/adverse effects , Adult , Capnography , Case-Control Studies , Exercise , Exercise Test , Female , Forced Expiratory Volume , Humans , Inhalation Exposure/adverse effects , Lung/physiopathology , Male , Respiratory Dead Space , Smoking/physiopathology , Spirometry , Tidal Volume , Time Factors , Vital Capacity , Young Adult
20.
Exp Physiol ; 99(9): 1191-202, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24659613

ABSTRACT

α-Adrenergic-mediated vasoconstriction is greater during simulated exercise in animal models of metabolic syndrome (MetSyn) when compared with control animals. In an attempt to translate such findings to humans, we hypothesized that adults with MetSyn (n = 14, 35 ± 3 years old) would exhibit greater α-adrenergic responsiveness during exercise when compared with age-matched healthy control subjects (n = 16, 31 ± 3 years old). We measured muscle sympathetic nerve activity (MSNA; microneurography) and forearm blood flow (Doppler ultrasound) during dynamic forearm exercise (15% of maximal voluntary contraction). α-Adrenergic agonists (phenylephrine and clonidine) and an antagonist (phentolamine) were infused intra-arterially to assess α-adrenergic receptor responsiveness and restraint, respectively. Resting MSNA was ∼35% higher in adults with MetSyn (P < 0.05), but did not change in either group with dynamic exercise. Clonidine-mediated vasoconstriction was greater in adults with MetSyn (P < 0.01). Group differences in vascular responses to phenylephrine and phentolamine were not detected (P > 0.05). Interestingly, exercise-mediated vasodilatation was greater in MetSyn (P < 0.05). Adults with MetSyn exhibit greater resting MSNA and clonidine-mediated vasoconstriction, yet preserved functional sympatholysis and higher exercise blood flow during low-intensity hand-grip exercise when compared with age-matched healthy control subjects. These results suggest that adults with MetSyn exhibit compensatory vascular control mechanisms capable of preserving blood flow responses to exercise in the face of augmented sympathetic adrenergic activity.


Subject(s)
Exercise , Metabolic Syndrome/physiopathology , Muscle Contraction , Muscle, Skeletal/blood supply , Muscle, Skeletal/innervation , Sympathetic Nervous System/physiopathology , Vasoconstriction , Adaptation, Physiological , Adrenergic alpha-Agonists/administration & dosage , Adrenergic alpha-Antagonists/administration & dosage , Adult , Blood Flow Velocity , Case-Control Studies , Female , Hand Strength , Humans , Infusions, Intra-Arterial , Laser-Doppler Flowmetry , Male , Metabolic Syndrome/diagnosis , Regional Blood Flow , Time Factors , Upper Extremity , Vasoconstriction/drug effects , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL