Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37993715

ABSTRACT

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Oleic Acids , Animals , Cattle , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dairy Products , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Milk/chemistry , Neoplasms/diet therapy , Neoplasms/immunology , Oleic Acids/pharmacology , Oleic Acids/therapeutic use , Red Meat , Sheep
2.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34289383

ABSTRACT

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Female , Humans , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Leukemia, Myeloid, Acute/genetics , Lysine/genetics , Lysine/metabolism , Male , Mice , Mice, Inbred NOD , Mutation/genetics , NADP/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Primary Cell Culture , Protein Binding , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism
3.
Blood ; 140(11): 1291-1304, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35763665

ABSTRACT

Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.


Subject(s)
Calreticulin , Myeloproliferative Disorders , Animals , Calreticulin/genetics , Calreticulin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Glucose , Glycosylation , Humans , Janus Kinase 2/genetics , Mice , Mutation , Myeloproliferative Disorders/genetics , Receptors, Thrombopoietin/metabolism
4.
Mol Cell ; 64(5): 859-874, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27867011

ABSTRACT

Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Mitochondria/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/enzymology , Neoplasms/pathology , Oligopeptides/genetics , Oligopeptides/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism
5.
Mol Cell ; 59(3): 345-358, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26145173

ABSTRACT

Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.


Subject(s)
Leukemia, Hairy Cell/metabolism , MAP Kinase Kinase 1/metabolism , Melanoma/metabolism , Octamer Transcription Factor-1/metabolism , Oxo-Acid-Lyases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction , Acetoacetates/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Mutation , Proto-Oncogene Proteins B-raf/genetics , Up-Regulation
6.
Blood ; 136(18): 2051-2064, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32726410

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to progressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the pathogenesis of PMF have been extensively investigated, the sequential events that drive stromal activation and fibrosis by hematopoietic-stromal cross-talk remain elusive. Using an unbiased approach and validation in patients with MPN, we determined that the differential spatial expression of the chemokine CXCL4/platelet factor-4 marks the progression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the activation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells, and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF models. Our data indicate that higher CXCL4 expression in MPN has profibrotic effects and is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a promising strategy to reduce inflammation in PMF.


Subject(s)
Bone Marrow/pathology , Fibrosis/pathology , Inflammation/pathology , Myeloproliferative Disorders/complications , Platelet Factor 4/metabolism , Primary Myelofibrosis/pathology , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Proliferation , Disease Progression , Fibrosis/etiology , Fibrosis/immunology , Fibrosis/metabolism , Humans , Inflammation/etiology , Inflammation/immunology , Inflammation/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Megakaryocytes , Mice , Mice, Knockout , Mutation , Platelet Factor 4/genetics , Primary Myelofibrosis/etiology , Primary Myelofibrosis/immunology , Primary Myelofibrosis/metabolism
7.
Mol Cell ; 53(4): 534-48, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24486017

ABSTRACT

Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/metabolism , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Sirtuin 3/metabolism , Tyrosine/chemistry , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Lysine/chemistry , Male , Mice , Mice, Nude , Mitochondria/metabolism , Neoplasm Transplantation , Neoplasms/metabolism , Phosphorylation
8.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25042803

ABSTRACT

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Histone Deacetylases/metabolism , Leukemia/pathology , Lung Neoplasms/pathology , Lysine/metabolism , Phosphogluconate Dehydrogenase/metabolism , Acetylation , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Leukemia/metabolism , Lung Neoplasms/metabolism , Mice , NADP/metabolism , Neoplasms, Experimental , Protein Binding/physiology , Protein Multimerization
9.
Blood ; 131(7): 782-786, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29288169

ABSTRACT

Mutations in calreticulin (CALR) are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth. We further show that the threshold of positive charge in the mutant CALR C terminus influences both binding of mutant CALR to MPL and activation of MPL signaling. We find that mutant CALR binds to the extracellular domain of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required to activate signaling. With respect to mutant CALR function, we show that its lectin-dependent function is required for binding to MPL and for cytokine independent growth, whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms.


Subject(s)
Calreticulin/genetics , Calreticulin/metabolism , Myeloproliferative Disorders/genetics , Protein Interaction Domains and Motifs , Receptors, Thrombopoietin/genetics , Receptors, Thrombopoietin/metabolism , Calreticulin/chemistry , Cells, Cultured , HEK293 Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mutagenesis , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , Receptors, Thrombopoietin/chemistry , Signal Transduction
10.
Blood ; 125(2): 327-35, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25281607

ABSTRACT

Signaling mutations (eg, JAK2V617F) and mutations in genes involved in epigenetic regulation (eg, TET2) are the most common cooccurring classes of mutations in myeloproliferative neoplasms (MPNs). Clinical correlative studies have demonstrated that TET2 mutations are enriched in more advanced phases of MPNs such as myelofibrosis and leukemic transformation, suggesting that they may cooperate with JAK2V617F to promote disease progression. To dissect the effects of concomitant Jak2V617F expression and Tet2 loss within distinct hematopoietic compartments in vivo, we generated Jak2V617F/Tet2 compound mutant genetic mice. We found that the combination of Jak2V617F expression and Tet2 loss resulted in a more florid MPN phenotype than that seen with either allele alone. Concordant with this, we found that Tet2 deletion conferred a strong functional competitive advantage to Jak2V617F-mutant hematopoietic stem cells (HSCs). Transcriptional profiling revealed that both Jak2V617F expression and Tet2 loss were associated with distinct and nonoverlapping gene expression signatures within the HSC compartment. In aggregate, our findings indicate that Tet2 loss drives clonal dominance in HSCs, and Jak2V617F expression causes expansion of downstream precursor cell populations, resulting in disease progression through combinatorial effects. This work provides insight into the functional consequences of JAK2V617F-TET2 comutation in MPNs, particularly as it pertains to HSCs.


Subject(s)
DNA-Binding Proteins/genetics , Hematopoietic Stem Cells/pathology , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Proto-Oncogene Proteins/genetics , Animals , Dioxygenases , Disease Models, Animal , Disease Progression , Flow Cytometry , Gene Expression Profiling , Mice , Mice, Transgenic , Mutation
11.
Blood ; 123(11): 1729-38, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24449215

ABSTRACT

RUNX1/CBFß (core binding factor [CBF]) is a heterodimeric transcription factor complex that is frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. The MLL protein interacts with RUNX1 and prevents RUNX1 from ubiquitin-mediated degradation. RUNX1/CBFß recruits MLL to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFß activity has not been fully understood. In this report, we show that MLL fusion proteins and the N-terminal MLL portion of MLL fusions downregulate RUNX1 and CBFß protein expression via the MLL CXXC domain and flanking regions. We confirmed this finding in Mll-Af9 knock-in mice and human M4/M5 acute myeloid leukemia (AML) cell lines, with or without MLL translocations, showing that MLL translocations cause a hypomorph phenotype of RUNX1/CBFß. Overexpression of RUNX1 inhibits the development of AML in Mll-Af9 knock-in mice; conversely, further reducing Runx1/Cbfß levels accelerates MLL-AF9-mediated AML in bone marrow transplantation assays. These data reveal a newly defined negative regulation of RUNX1/CBFß by MLL fusion proteins and suggest that targeting RUNX1/CBFß levels may be a potential therapy for MLLs.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/physiology , Animals , Blotting, Western , Bone Marrow Transplantation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic
13.
J Biol Chem ; 289(38): 26533-26541, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25104357

ABSTRACT

The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.


Subject(s)
Protein Processing, Post-Translational , Pyruvate Dehydrogenase (Lipoamide)/metabolism , 3T3 Cells , Amino Acid Substitution , Animals , Carbohydrate Metabolism , Catalytic Domain , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/physiology , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Oxidative Phosphorylation , Phosphorylation , Protein Binding , Pyruvate Dehydrogenase (Lipoamide)/chemistry , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvic Acid/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Tumor Burden , Tyrosine/metabolism
14.
J Biol Chem ; 289(31): 21413-22, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24962578

ABSTRACT

Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.


Subject(s)
Cell Division , Neoplasms/pathology , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/antagonists & inhibitors , Tyrosine/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Humans , Lactic Acid/metabolism , Molecular Sequence Data , Neoplasms/enzymology , Oxygen Consumption , Phosphorylation , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/chemistry , Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/genetics , Receptor, Fibroblast Growth Factor, Type 1/physiology , Sequence Homology, Amino Acid
15.
Cancer ; 120(6): 774-80, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24374503

ABSTRACT

Nearly a century ago, Otto Warburg made the astute observation that the metabolic properties of cancer cells differ markedly from those of normal cells. Several decades passed before the concept of exploiting cancer cell metabolism came into clinical practice with the advent of chemotherapy, the underlying principle of which is to target rapidly dividing cells by interfering with critical processes that are all, on some level, driven by cell metabolism. Although chemotherapy can be quite effective, success rates are highly variable and the adverse effects associated with treatment often outweigh the benefits due to the fact that chemotherapy is indiscriminately cytotoxic against all rapidly dividing cells, cancerous or healthy. During the past several years, a more intricate understanding of cancer cell metabolism has permitted the development of targeted therapies that aim to specifically target cancer cells and spare healthy tissue by exploiting the altered metabolism of cancer cells. The identification of new metabolic targets and the subsequent development of small-molecule inhibitors of metabolic enzymes have demonstrated the utility and promise of targeting cancer cell metabolism as an anticancer strategy. This review summarizes recent advances in the identification and characterization of several metabolic enzymes as emerging anticancer targets.


Subject(s)
Antineoplastic Agents/therapeutic use , Energy Metabolism/drug effects , Glucose/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Division/drug effects , Cell Proliferation/drug effects , Glycolysis/drug effects , Humans
16.
Mol Cancer Res ; 22(4): 386-401, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38294692

ABSTRACT

Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS: Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.


Subject(s)
Adenosylhomocysteinase , Endoplasmic Reticulum , Melanoma , Humans , Adenosylhomocysteinase/metabolism , Calcium , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , Homeostasis , Melanoma/metabolism , Melanoma/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
17.
Blood ; 117(25): 6885-94, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21527514

ABSTRACT

p90 ribosomal S6 kinase 2 (p90RSK2) is important in diverse cellular processes including gene expression, cell proliferation, and survival. We found that p90RSK2 is commonly activated in diverse leukemia cell lines expressing different leukemogenic tyrosine kinases, including BCR-ABL and FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). Interestingly, in a murine BM transplantation (BMT) model, genetic deficiency of RSK2 did not affect the pathogenesis or disease progression of BCR-ABL-induced myeloproliferative neoplasm (PN). In contrast, FLT3-ITD induced a T-cell acute lymphoblastic leukemia in BMT mice receiving RSK2 knockout (KO) BM cells, phenotypically distinct from the myeloproliferative neoplasm induced by FLT3-ITD using wild-type BM cells. In consonance with these results, inhibition of RSK2 by an RSK inhibitor, fmk, did not effectively induce apoptosis in BCR-ABL-expressing murine Ba/F3 cells, human K562 cells or primary tissue samples from CML patients, whereas fmk treatment induced significant apoptotic cell death not only in FLT3-ITD-positive Ba/F3 cells, human Molm14 and Mv(4;11) leukemia cells, but also in primary tissue samples from AML patients. These results suggest that RSK2 is dispensable for BCR-ABL-induced myeloid leukemia, but may be required for pathogenesis and lineage determination in FLT3-ITD-induced hematopoietic transformation. RSK2 may thus represent an alternative therapeutic target in the treatment of FLT3-ITD-positive leukemia.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myeloid/enzymology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , fms-Like Tyrosine Kinase 3/genetics , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Enzyme Activation , Enzyme Inhibitors/pharmacology , Fusion Proteins, bcr-abl/metabolism , Gene Knockout Techniques , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Mice , Mice, Inbred BALB C , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/genetics , fms-Like Tyrosine Kinase 3/metabolism
18.
Blood ; 118(25): 6544-52, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22012064

ABSTRACT

The mixed-lineage leukemia (MLL) H3K4 methyltransferase protein, and the heterodimeric RUNX1/CBFß transcription factor complex, are critical for definitive and adult hematopoiesis, and both are frequently targeted in human acute leukemia. We identified a physical and functional interaction between RUNX1 (AML1) and MLL and show that both are required to maintain the histone lysine 4 trimethyl mark (H3K4me3) at 2 critical regulatory regions of the AML1 target gene PU.1. Similar to CBFß, we show that MLL binds to AML1 abrogating its proteasome-dependent degradation. Furthermore, a subset of previously uncharacterized frame-shift and missense mutations at the N terminus of AML1, found in MDS and AML patients, impairs its interaction with MLL, resulting in loss of the H3K4me3 mark within PU.1 regulatory regions, and decreased PU.1 expression. The interaction between MLL and AML1 provides a mechanism for the sequence-specific binding of MLL to DNA, and identifies RUNX1 target genes as potential effectors of MLL function.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Histones/metabolism , Mutation , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Trans-Activators/genetics , Acute Disease , Blotting, Western , Cell Line , Cell Line, Tumor , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/metabolism , Gene Expression , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Lysine/metabolism , Methylation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Protein Binding , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/metabolism
19.
Cell Chem Biol ; 29(7): 1200-1208.e6, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35429459

ABSTRACT

Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.


Subject(s)
Isocitrate Dehydrogenase , Neoplasms , Cell Line, Tumor , Citric Acid Cycle , Glutamine/metabolism , Isocitrate Dehydrogenase/metabolism , Oxidation-Reduction , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
20.
Blood Cancer Discov ; 3(4): 298-315, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35405004

ABSTRACT

Approximately 20% of patients with myeloproliferative neoplasms (MPN) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type I or type II. While type II CALR-mutant proteins retain many of the Ca2+ binding sites present in the wild-type protein, type I CALR-mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain unexplored. Here, we show that the loss of Ca2+ binding residues in the type I mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1α/XBP1 pathway of the unfolded protein response. Genetic or pharmacologic inhibition of IRE1α/XBP1 signaling induces cell death in type I mutant but not type II mutant or wild-type CALR-expressing cells, and abrogates type I mutant CALR-driven MPN disease progression in vivo. SIGNIFICANCE: Current targeted therapies for CALR-mutated MPNs are not curative and fail to differentiate between type I- versus type II-driven disease. To improve treatment strategies, it is critical to identify CALR mutation type-specific vulnerabilities. Here we show that IRE1α/XBP1 represents a unique, targetable dependency specific to type I CALR-mutated MPNs. This article is highlighted in the In This Issue feature, p. 265.


Subject(s)
Calreticulin , Myeloproliferative Disorders , Neoplasms , Unfolded Protein Response , Calcium/metabolism , Calreticulin/genetics , Endoribonucleases/genetics , Humans , Mutant Proteins/chemistry , Mutation , Myeloproliferative Disorders/genetics , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL