Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586884

ABSTRACT

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Subject(s)
Pharmacology, Clinical , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Carrier Proteins , Ligands
2.
J Pharmacol Exp Ther ; 388(2): 232-240, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37739806

ABSTRACT

Physical exercise induces physiologic adaptations and is effective at reducing the risk of premature death from all causes. Pharmacological exercise mimetics may be effective in the treatment of a range of diseases including obesity and metabolic syndrome. Previously, we described the development of SLU-PP-332, an agonist for the estrogen-related receptor (ERR)α, ß, and γ nuclear receptors that activates an acute aerobic exercise program. Here we examine the effects of this exercise mimetic in mouse models of obesity and metabolic syndrome. Diet-induced obese or ob/ob mice were administered SLU-PP-332, and the effects on a range of metabolic parameters were assessed. SLU-PP-332 administration mimics exercise-induced benefits on whole-body metabolism in mice including increased energy expenditure and fatty acid oxidation. These effects were accompanied by decreased fat mass accumulation. Additionally, the ERR agonist effectively reduced obesity and improved insulin sensitivity in models of metabolic syndrome. Pharmacological activation of ERR may be an effective method to treat metabolic syndrome and obesity. SIGNIFICANCE STATEMENT: An estrogen receptor-related orphan receptor agonist, SLU-PP-332, with exercise mimetic activity, holds promise as a therapeutic to treat metabolic diseases by decreasing fat mass in mouse models of obesity.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Mice , Animals , Metabolic Syndrome/drug therapy , Obesity/drug therapy , Obesity/metabolism , Energy Metabolism , Receptors, Cytoplasmic and Nuclear , ERRalpha Estrogen-Related Receptor , Estrogens
3.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Article in English | MEDLINE | ID: mdl-37717940

ABSTRACT

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Subject(s)
Inflammation , Kidney , Mice , Humans , Animals , Aged , Infant , Infant, Newborn , Kidney/metabolism , Inflammation/metabolism , Estrogens/metabolism , Mitochondria/metabolism , Cytokines/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
4.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731514

ABSTRACT

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Ligands , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
5.
J Biol Chem ; 298(2): 101554, 2022 02.
Article in English | MEDLINE | ID: mdl-34973337

ABSTRACT

The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer-based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic-euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.


Subject(s)
Anion Transport Proteins , Mitochondrial Membrane Transport Proteins , Monocarboxylic Acid Transporters , Obesity , Quinolones , Animals , Anion Transport Proteins/antagonists & inhibitors , Anion Transport Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Glucose/metabolism , Mice , Mice, Obese , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Obesity/drug therapy , Obesity/metabolism , Pyruvic Acid/metabolism , Quinolones/pharmacology
6.
J Org Chem ; 88(24): 17062-17068, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38016045

ABSTRACT

Herein, we developed a new SnCl2-mediated ANRORC (addition of nucleophile, ring-opening, and ring-closure)-like rearrangement for the synthesis of 3-amino-2-substituted-quinazolin-4(3H)-one from 2-(2-nitrophenyl)-5-substituted-1,3,4-oxadiazole. The new method is solvent-dependent and features the use of a green solvent system (i.e., ethanol/water), high yields, and simple workup. The reduced product could be exclusively synthesized by changing the solvent to acetonitrile.

7.
J Enzyme Inhib Med Chem ; 38(1): 2201407, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37078173

ABSTRACT

Multiple inhibitions of CA, COX-2 and 5-LOX enzymes has been recognised as a useful strategy for the development of anti-inflammatory drugs that can avoid the disadvantages of using NSAIDs alone. Here, we report new pyridazine-based sulphonamides (5a-c and 7a-f) as potential multi-target anti-inflammatory candidates. First, the furanone heterocycle in the dual CA/COX-2 inhibitor Polmacoxib was replaced with the pyridazinone one. Then, a hydrophobic tail was appended through benzylation of the 3-hydroxyl group of the pyridazinone scaffold to afford benzyloxy pyridazines 5a-c. Furthermore, the structures were adorned with the polar sulphonate functionality, in pyridazine sulphonates 7a-f, that are expected to be engaged in interactions with the hydrophilic half of the CA binding sites. All of the disclosed pyridazinones were tested for inhibitory activities against 4 hCA isoforms (I, II, IX, and XII), as well as against COX-1/2, and 5-LOX. Furthermore, in vivo anti-inflammatory and analgesic effects of pyridazinones 7a and 7b were examined.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/metabolism , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrase IX/metabolism , Cyclooxygenase 2/metabolism , Sulfonamides/chemistry , Anti-Inflammatory Agents/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Benzenesulfonamides
8.
Bioorg Chem ; 119: 105540, 2022 02.
Article in English | MEDLINE | ID: mdl-34902646

ABSTRACT

Liver X Receptors (LXRs) are members of the nuclear receptor family, and they play significant role in lipid and cholesterol metabolism. Moreover, they are key regulators of several inflammatory pathways. Pharmacological modulation of LXRs holds great potential in treatment of metabolic diseases, neurodegenerative diseases, and cancer. We were the first group to identify LXR inverse agonists SR9238 (6) and SR9243 (7) and demonstrate their potential utility in treating liver diseases and cancer. Here, we present the results of structure-activity relationship (SAR) studies, based around SR9238 (6) and SR9243 (7). This study led to identification of 16, 17, 19, and 38, which were more potent inverse agonists than SR9238 (6) and SR9243 (7) and inhibited expression of the fatty acid synthase gene in DU145 cells. We previously demonstrated that inhibition of FASN is correlated to the anticancer activity of SR9243 (7) and this suggests that new inverse agonists have great potential as anticancer agents. We identified compounds with distinct selectivity toward both LXR isoforms, which can be excellent tools to study the pharmacology of both isoforms. We employed molecular dynamic (MD) simulations to better understand the molecular mechanism underlying inverse agonist activity and to guide our future design.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Liver X Receptors/agonists , Sulfonamides/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry
9.
Bioorg Chem ; 119: 105554, 2022 02.
Article in English | MEDLINE | ID: mdl-34923243

ABSTRACT

Nuclear Estrogen receptors (ER) are cytoplasmic proteins; translocated to the nucleus to induce transcriptional signals after getting bound to the estrogen hormone. ER activation implicated in cancer cell proliferation of female reproductive organs. Thus, the discovery of ER antagonists is a reliable strategy to combat estrogen-dependent breast cancer. Endometrial carcinoma is one of the complications encountered upon long-term therapy by selective estrogen receptor modulators (SERMs) like Tamoxifen (TMX) and methyl piperidinopyrazole (MPP). Thus, the ER-full antagonist is a solution to improve the safety of this class of therapeutics during the treatment of breast cancer. We selected MPP as a lead structure to design conformationally constrained analogs. Structural rigidification is a proven strategy to transform the SERMs into full antagonists. Accordingly, we synthesized 7-methoxy-3-(4-methoxyphenyl)-4,5-dihydro-2H-benzo[g]indazoles (4), (6a-c),(8-12) along with the biphenolic counterparts(13-19)that are the anticipated active metabolites. The 4-nitrophenyl derivative(4)is with the most balanced profile regardingthe in vivoanti-uterotrophic potential (EC50 = 4.160 µM); and the cytotoxicity assay of the corresponding active metabolite(13)against ER+ breast cancer cell lines (MCF-7 IC50 = 7.200 µM, T-47D IC50 = 11.710 µM). The inconsiderable uterotrophic activities of the elaborated ER-antagonists and weak antiproliferative activity of the compound(13)against ovarian cancer (SKOV-3 IC50 = 29.800 µM) highlighted it as a good start point to elaborate potential ER-full antagonists devoid of endometrial carcinoma. Extending the pendant chain that protrudes from the 2-(4-(substituted)-phenyl) ring of the new benzo-indazoles is recommended for enhancing the potency based on the binding mode of compound(13)in the ligand-binding domain (LBD) of ER.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Estrogen Receptor Antagonists/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Estrogen Receptor Antagonists/chemical synthesis , Estrogen Receptor Antagonists/chemistry , Female , Humans , Ligands , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Rats, Wistar , Receptors, Estrogen/metabolism , Structure-Activity Relationship
10.
J Enzyme Inhib Med Chem ; 37(1): 2112-2132, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35912578

ABSTRACT

The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of new effective therapeutic interventions for the battle against SARS-CoV-2. A new series of N-(5-nitrothiazol-2-yl)-carboxamido derivatives were designed and synthesised based on the structural optimisation principle of the SARS-CoV Mpro co-crystallized WR1 inhibitor. Notably, compound 3b achieved the most promising anti-SARS-CoV-2 activity with an IC50 value of 174.7 µg/mL. On the other hand, compounds 3a, 3b, and 3c showed very promising SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12, and 11.90 µg/mL, respectively. Compound 3b docking score was very promising (-6.94 kcal/mol) and its binding mode was nearly similar to that of WR1. Besides, the molecular dynamics (MD) simulations of compound 3b showed its great stability inside the binding pocket until around 40 ns. Finally, a very promising SAR was concluded to help to design more powerful SARS-CoV-2 Mpro inhibitors shortly.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins
11.
Bioorg Chem ; 115: 105215, 2021 10.
Article in English | MEDLINE | ID: mdl-34358799

ABSTRACT

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.


Subject(s)
Alkaloids/pharmacology , Antimalarials/pharmacology , Pantoea/chemistry , Plasmodium falciparum/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Antimalarials/chemistry , Antimalarials/isolation & purification , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
12.
Bioorg Chem ; 100: 103878, 2020 07.
Article in English | MEDLINE | ID: mdl-32361486

ABSTRACT

Herein, we describe the design and synthesis of new benzenesulfonamide derivatives as selective COX-2 inhibitors based on bumetanide scaffold. Benzenesulfonamides bearing both the pyrazole 6b and the triazoles 9a, 9c were good inhibitors of COX-2 with IC50 values of 0.32, 0.28 and 0.17 µM, respectively. These benzenesulfonamides 6b, 9a and 9c exhibited a higher selectivity index than the reference drug celecoxib. Molecular modeling study showed that incorporation of bumetanide led to a unique binding mode that is most likely the reason for the observed significant COX-2 selectivity. The anti-inflammatory activity of synthesized compounds revealed that triazoles 9a and 9c demonstrated higher efficacy than celecoxib upon using in vivo carrageenan-induced rat paw edema model. Most of the prepared compounds possess low ulcerogenic potential when administered orally. Therefore, these compounds have a great potential to be developed as safe therapeutics for inflammation, pain, and other diseases where COX-2 plays important role in their pathophysiology.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Bumetanide/analogs & derivatives , Bumetanide/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Bumetanide/chemical synthesis , Bumetanide/therapeutic use , Catalytic Domain/drug effects , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/therapeutic use , Drug Design , Edema/drug therapy , Edema/metabolism , Male , Mice , Molecular Docking Simulation , Rats , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Benzenesulfonamides
13.
Bioorg Chem ; 102: 104079, 2020 09.
Article in English | MEDLINE | ID: mdl-32683181

ABSTRACT

Estrogen Related Receptors (ERRs) are key regulators of energy homeostasis and play important role in the etiology of metabolic disorders, skeletal muscle related disorders, and neurodegenerative diseases. Among the three ERR isoforms, ERRα emerged as a potential drug target for metabolic and neurodegenerative diseases. Although ERRß/γ selective agonist chemical tools have been identified, there are no chemical tools that effectively target ERRα agonism. We successfully engineered high affinity ERRα agonism into a chemical scaffold that displays selective ERRß/γ agonist activity (GSK4716), providing novel ERRα/ß/γ pan agonists that can be used as tools to probe the physiological roles of these nuclear receptors. We identified the structural requirements to enhance selectivity toward ERRα. Molecular modeling shows that our novel modulators have favorable binding modes in the LBP of ERRα and can induce conformational changes where Phe328 that originally occupies the pocket is dislocated to accommodate the ligands in a rather small cavity. The best agonists up-regulated the expression of target genes PGC-1α and PGC-1ß, which are necessary to achieve maximal mitochondrial biogenesis. Moreover, they increased the mRNA levels of PDK4, which play an important role in energy homeostasis.


Subject(s)
Molecular Docking Simulation/methods , Receptors, Estrogen/metabolism , Humans , Models, Molecular , Signal Transduction
14.
Bioorg Chem ; 105: 104352, 2020 12.
Article in English | MEDLINE | ID: mdl-33080494

ABSTRACT

PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/ß-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemical synthesis , Quinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspases, Effector/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cytochromes c/metabolism , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 5 Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinolines/pharmacology , bcl-2-Associated X Protein/metabolism
15.
Bioorg Med Chem Lett ; 29(3): 449-453, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30587446

ABSTRACT

Liver X Receptor (LXR) agonists have been reported as a potential treatment for atherosclerosis, Alzheimer's disease and hepatitis C virus (HCV) infection. We have designed and synthesized a series of potent compounds based on a 1,2,4-triazole scaffold as novel LXR modulators. In cell-based cotransfection assays these compounds generally functioned as LXR agonists and we observed compounds with selectivity towards LXRα (7-fold) and LXRß (7-fold) in terms of potency. Assessment of the effects of selected compounds on LXR target gene expression in HepG2 cells revealed that compounds 6a-b and 8a-b behaved as inverse agonists on FASN expression even though they were agonists in the LXRα and LXRß cotransfection assays. Interestingly, these compounds had no effect on the expression of SREBP-1c confirming a unique LXR modulator pharmacology. Molecular docking studies and evaluation of ADME properties in-silico show that active compounds possess favorable binding modes and ADME profiles. Thus, these compounds may be useful for in vivo characterization of LXR modulators with unique profiles and determination of their potential clinical utility.


Subject(s)
Liver X Receptors/agonists , Triazoles/pharmacology , Dose-Response Relationship, Drug , Drug Development , Humans , Liver X Receptors/genetics , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
16.
Biomed Chromatogr ; 33(9): e4579, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31077429

ABSTRACT

An efficient, economic and high yielding method was described for the synthesis of baclofen (BAC) pharmacopoeial impurities (impurity A and impurity B) which can be used for gram-scale synthesis. Furthermore, a novel ecofriendly thin-layer chromatographic TLC-densitometric method was established and validated for the determination of BAC and its synthesized impurities. The developed TLC-densitometric method is based on the chromatographic separation using TLC plates (60 F254 ) using a green mobile phase of ethyl acetate-methanol-ammonia solution, 33% (8:2:0.1, by volume) with UV scanning at 220 nm. The proposed method was validated with respect to International Conference on Harmonization guidelines. The validated method was successfully applied for determination of BAC in pure form and in its commercial dosage form. Additionally, the greenness profile of the developed method was evaluated and compared with those of the reported chromatographic methods. The developed method was found to be superior to the published methods, being environmentally benign.


Subject(s)
Baclofen , Chromatography, Thin Layer/methods , Densitometry/methods , Drug Contamination , Baclofen/analysis , Baclofen/chemistry , Limit of Detection , Linear Models , Reproducibility of Results
17.
Curr Pharm Des ; 30(8): 597-623, 2024.
Article in English | MEDLINE | ID: mdl-38343054

ABSTRACT

2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.


Subject(s)
Antineoplastic Agents , Diketopiperazines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Humans , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Molecular Structure , Biological Products/chemistry , Biological Products/pharmacology , Cell Proliferation/drug effects
18.
Front Pharmacol ; 14: 1171931, 2023.
Article in English | MEDLINE | ID: mdl-37153791

ABSTRACT

Pain is a complex problem affecting millions of people worldwide. The current therapies to reduce pain are limited as many treatment options inadequately address the causes of pain, lead to tolerance of the drug, or have adverse effects including abuse potential. While there are many causes of pain, one underlying mechanism to the pathogenesis and maintenance of pain conditions is chronic inflammation driven by the NLRP3 inflammasome. Several inflammasome inhibitors are currently under investigation however have the potential to suppress the functioning of the innate immune system, which may cause unwanted affects in patients. Here, we show that the nuclear receptor REV-ERB can suppress the activation of the inflammasome when pharmacologically activated with small molecule agonists. Additionally, REV-ERB activation appears to have analgesic potential in a model of acute inflammatory pain, likely as a result of inflammasome suppression.

19.
Eur J Med Chem ; 250: 115180, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36796297

ABSTRACT

In the current medical era, the single target inhibition paradigm of drug discovery has given way to the multi-target design concept. As the most intricate pathological process, inflammation gives rise to a variety of diseases. There are several drawbacks to the single target anti-inflammatory drugs currently available. Herein, we present the design and synthesis of a novel series of 4-(5-amino-pyrazol-1-yl)benzenesulfonamide derivatives (7a-j) with COX-2, 5-LOX and carbonic anhydrase (CA) inhibitory activities as potential multi-target anti-inflammatory agents. The pharmacophoric 4-(pyrazol-1-yl)benzenesulfonamide moiety in Celecoxib was used as the core scaffold and different substituted phenyl and 2-thienyl tails were grafted via a hydrazone linker to enhance inhibitory activity against hCA IX and XII isoforms, yielding target pyrazoles 7a-j. All reported pyrazoles were evaluated for their inhibitory activity against COX-1, COX-2, and 5-LOX. Pyrazoles 7a, 7b, and 7j showed the best inhibitory activities against the COX-2 isozyme (IC50 = 49, 60 and 60 nM, respectively) and against 5-LOX (IC50 = 2.4, 1.9, and 2.5 µM, respectively) with excellent SI indices (COX-1/COX-2) of 212.24, 208.33, and 158.33, respectively. In addition, the inhibitory activities of pyrazoles 7a-j were evaluated against four different hCA isoforms I, II, IX, and XII. Both transmembrane hCA IX and XII isoforms were potently inhibited by pyrazoles 7a-j with KI values in the nanomolar range; 13.0-82.1 nM and 5.8-62.0 nM, respectively. Furthermore, pyrazoles 7a and 7b with the highest COX-2 activity and selectivity indices were evaluated in vivo for their analgesic, anti-inflammatory, and ulcerogenic activities. The serum level of the inflammatory mediators was then measured in order to confirm the anti-inflammatory activities of pyrazoles 7a and 7b.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/metabolism , Molecular Structure , Structure-Activity Relationship , Cyclooxygenase 2 , Carbonic Anhydrase Inhibitors/pharmacology , Isoenzymes , Anti-Inflammatory Agents/pharmacology , Pyrazoles/pharmacology , Carbonic Anhydrase IX/metabolism , Benzenesulfonamides
20.
ACS Chem Biol ; 18(4): 756-771, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36988910

ABSTRACT

Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, ß, and γ), and although ERRß/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo. Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.


Subject(s)
Estrogens , Exercise Tolerance , Receptors, Estrogen , Animals , Mice , Exercise Tolerance/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Estrogens/chemistry , Estrogens/pharmacology , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL