Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 582(7811): 271-276, 2020 06.
Article in English | MEDLINE | ID: mdl-32499640

ABSTRACT

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Subject(s)
Calcineurin/metabolism , Cell Proliferation , Homeodomain Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocytes, Cardiac/cytology , Animals , Animals, Newborn , Female , Gene Deletion , Gene Expression Regulation , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myocardium/cytology , Protein Binding , Regeneration
2.
Circulation ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708635

ABSTRACT

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

3.
Circulation ; 144(9): 712-727, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34102853

ABSTRACT

BACKGROUND: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. METHODS: Cardiac-specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac-specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction. Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and nuclear magnetic resonance spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. RESULTS: We found that PKM1 expression is reduced in failing human and mouse hearts. It is important to note that cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against transverse aortic constriction-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. CONCLUSIONS: These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.


Subject(s)
Carrier Proteins/genetics , Disease Susceptibility , Heart Failure/etiology , Heart Failure/metabolism , Membrane Proteins/genetics , Myocytes, Cardiac/metabolism , Thyroid Hormones/genetics , Ventricular Remodeling/genetics , Animals , Biomarkers , Carrier Proteins/metabolism , Cell Respiration , Disease Models, Animal , Disease Progression , Enzyme Activation , Gene Expression , Glucose/metabolism , Glycolysis , Heart Failure/physiopathology , Heart Function Tests , Humans , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Models, Biological , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
4.
Circulation ; 141(22): 1787-1799, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32272846

ABSTRACT

BACKGROUND: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.


Subject(s)
Disease Models, Animal , Mitral Valve Insufficiency/pathology , Myocytes, Cardiac/pathology , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Shape , Cell Size , Echocardiography , Fibrosis , Gene Expression Profiling , Hypertrophy , Infusion Pumps, Implantable , Magnetic Resonance Imaging , Male , Mice , Mitral Valve/injuries , Mitral Valve Insufficiency/complications , Mitral Valve Insufficiency/diagnostic imaging , Myocytes, Cardiac/metabolism , Polyribosomes/ultrastructure , RNA, Messenger/biosynthesis , Sirolimus/pharmacology , Sirolimus/therapeutic use , Systole , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/pathology
6.
J Cardiovasc Aging ; 4(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38455514

ABSTRACT

Introduction: Gradual exposure to a chronic hypoxic environment leads to cardiomyocyte proliferation and improved cardiac function in mouse models through a reduction in oxidative DNA damage. However, the upstream transcriptional events that link chronic hypoxia to DNA damage have remained obscure. Aim: We sought to determine whether hypoxia signaling mediated by the hypoxia-inducible factor 1 or 2 (HIF1A or HIF2A) underlies the proliferation phenotype that is induced by chronic hypoxia. Methods and Results: We used genetic loss-of-function models using cardiomyocyte-specific HIF1A and HIF2A gene deletions in chronic hypoxia. We additionally characterized a cardiomyocyte-specific HIF2A overexpression mouse model in normoxia during aging and upon injury. We performed transcriptional profiling with RNA-sequencing on cardiac tissue, from which we verified candidates at the protein level. We find that HIF2A - rather than HIF1A - mediates hypoxia-induced cardiomyocyte proliferation. Ectopic, oxygen-insensitive HIF2A expression in cardiomyocytes reveals the cell-autonomous role of HIF2A in cardiomyocyte proliferation. HIF2A overexpression in cardiomyocytes elicits cardiac regeneration and improvement in systolic function after myocardial infarction in adult mice. RNA-sequencing reveals that ectopic HIF2A expression attenuates DNA damage pathways, which was confirmed with immunoblot and immunofluorescence. Conclusion: Our study provides mechanistic insights about a new approach to induce cardiomyocyte renewal and mitigate cardiac injury in the adult mammalian heart. In light of evidence that DNA damage accrues in cardiomyocytes with aging, these findings may help to usher in a new therapeutic approach to overcome such age-related changes and achieve regeneration.

7.
Nat Cardiovasc Res ; 3(3): 372-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39183959

ABSTRACT

Targeting Meis1 and Hoxb13 transcriptional activity could be a viable therapeutic strategy for heart regeneration. In this study, we performd an in silico screening to identify FDA-approved drugs that can inhibit Meis1 and Hoxb13 transcriptional activity based on the resolved crystal structure of Meis1 and Hoxb13 bound to DNA. Paromomycin (Paro) and neomycin (Neo) induced proliferation of neonatal rat ventricular myocytes in vitro and displayed dose-dependent inhibition of Meis1 and Hoxb13 transcriptional activity by luciferase assay and disruption of DNA binding by electromobility shift assay. X-ray crystal structure revealed that both Paro and Neo bind to Meis1 near the Hoxb13-interacting domain. Administration of Paro-Neo combination in adult mice and in pigs after cardiac ischemia/reperfusion injury induced cardiomyocyte proliferation, improved left ventricular systolic function and decreased scar formation. Collectively, we identified FDA-approved drugs with therapeutic potential for induction of heart regeneration in mammals.


Subject(s)
Cell Proliferation , Homeodomain Proteins , Myeloid Ecotropic Viral Integration Site 1 Protein , Myocytes, Cardiac , Regeneration , Animals , Regeneration/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Proliferation/drug effects , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Neomycin/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Disease Models, Animal , Drug Approval , Mice , Ventricular Function, Left/drug effects , United States Food and Drug Administration , Rats , United States , Crystallography, X-Ray , Male , Mice, Inbred C57BL , Swine , Cells, Cultured , Transcription, Genetic/drug effects
8.
Nat Cardiovasc Res ; 1(7): 679-688, 2022 Jul.
Article in English | MEDLINE | ID: mdl-39196243

ABSTRACT

The mammalian neonatal heart can regenerate for 1 week after birth, after which, the majority of cardiomyocytes exit the cell cycle. Recent studies demonstrated that calcineurin mediates cell-cycle arrest of postnatal cardiomyocytes, partly through induction of nuclear translocation of the transcription factor Hoxb13 (a cofactor of Meis1). Here we show that inducible cardiomyocyte-specific deletion of calcineurin B1 in adult cardiomyocytes markedly decreases cardiomyocyte size and promotes mitotic entry, resulting in increased total cardiomyocyte number and improved left ventricular (LV) systolic function after myocardial infarction (MI). Similarly, pharmacological inhibition of calcineurin activity using FK506 promotes cardiomyocyte proliferation in vivo and increases cardiomyocyte number; however, FK506 administration after MI in mice failed to improve LV systolic function, possibly due to inhibition of vasculogenesis and blunting of the post-MI inflammatory response. Collectively, our results demonstrate that loss of calcineurin activity in adult cardiomyocytes promotes cell cycle entry; however, the effects of the calcineurin inhibitor FK506 on other cell types preclude a significant improvement of LV systolic function after MI.

9.
Nat Metab ; 2(2): 167-178, 2020 02.
Article in English | MEDLINE | ID: mdl-32617517

ABSTRACT

The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.


Subject(s)
Cell Cycle , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , Animals , DNA Damage , Dietary Fats/administration & dosage , Dietary Fats/metabolism , Fatty Acids/metabolism , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Reactive Oxygen Species/metabolism
10.
Front Cell Dev Biol ; 4: 137, 2016.
Article in English | MEDLINE | ID: mdl-28018900

ABSTRACT

Heart failure is a costly and deadly disease, affecting over 23 million patients worldwide, half of which die within 5 years of diagnosis. The pathophysiological basis of heart failure is the inability of the adult heart to regenerate lost or damaged myocardium. Although limited myocyte turnover does occur in the adult heart, it is insufficient for restoration of contractile function (Nadal-Ginard, 2001; Laflamme et al., 2002; Quaini et al., 2002; Hsieh et al., 2007; Bergmann et al., 2009, 2012). In contrast to lower vertebrates (Poss et al., 2002; Poss, 2007; Jopling et al., 2010; Kikuchi et al., 2010; Chablais et al., 2011; González-Rosa et al., 2011; Heallen et al., 2011), adult mammalian heart cardiomyogenesis following injury is very limited (Nadal-Ginard, 2001; Laflamme et al., 2002; Quaini et al., 2002; Bergmann et al., 2009, 2012) and is insufficient to restore normal cardiac function. Studies in the late 90s elegantly mapped the DNA synthesis and cell cycle dynamics of the mammalian heart during development and following birth (Soonpaa et al., 1996; Soonpaa and Field, 1997, 1998), where they showed that DNA synthesis drops significantly around birth with low-level DNA synthesis few days after birth. Around P5 to P7, cardiomyocytes undergo a final round of DNA synthesis without cytokinesis, and the majority become binucleated and exit the cell cycle permanently. Therefore, due to the similarities between the immature mammalian heart and lower vertebrates (Poss, 2007; Walsh et al., 2010), it became important to determine whether they have similar regenerative abilities. Recently, we demonstrated that removal of up to 15% of the apex of the left ventricle of postnatal day 1 (P1) mice results in complete regeneration within 3 weeks without any measurable fibrosis and cardiac dysfunction (Porrello et al., 2011). This response is characterized by robust cardiomyocyte proliferation with gradual restoration of normal cardiac morphology. In addition to the histological evidence of proliferating myocytes, genetic fate-mapping studies confirmed that the majority of newly formed cardiomyocytes are derived from proliferation of preexisting cardiomyocytes (Porrello et al., 2011). More recently, we established an ischemic injury model where the left anterior descending coronary artery was ligated in P1 neonates (Porrello et al., 2013). The injury response was similar to the resection model, with robust cardiomyocyte proliferation throughout the myocardium, as well as restoration of normal morphology by 21 days. However, this regenerative capacity is lost by P7, after which injury results in the typical cardiomyocyte hypertrophy and scar-formation characteristic of the adult mammalian heart. Not surprisingly, the loss of this regenerative capacity coincides with binucleation and cell cycle exit of cardiomyocytes (Soonpaa et al., 1996; Walsh et al., 2010). An important approach toward a deeper understanding the loss of cardiac regenerative capacity in mammals is to first consider why , and not only how , this happens. Regeneration of the early postnatal heart following resection or ischemic infarction involves replacement of lost myocardium and vasculature with restoration of normal myocardial thickness and architecture, with long-term normalization of systolic function. Why would the heart permanently forego such a remarkable regenerative program shortly after birth? The answer may lie in within the fundamental principal of evolutionary tradeoff.

SELECTION OF CITATIONS
SEARCH DETAIL