Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 613(7944): 575-581, 2023 01.
Article in English | MEDLINE | ID: mdl-36599981

ABSTRACT

Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Interphase , Mitosis , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Spectrometry, Fluorescence
2.
EMBO J ; 42(17): e113280, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37522872

ABSTRACT

Embryo implantation into the uterus marks a key transition in mammalian development. In mice, implantation is mediated by the trophoblast and is accompanied by a morphological transition from the blastocyst to the egg cylinder. However, the roles of trophoblast-uterine interactions in embryo morphogenesis during implantation are poorly understood due to inaccessibility in utero and the remaining challenges to recapitulate it ex vivo from the blastocyst. Here, we engineer a uterus-like microenvironment to recapitulate peri-implantation development of the whole mouse embryo ex vivo and reveal essential roles of the physical embryo-uterine interaction. We demonstrate that adhesion between the trophoblast and the uterine matrix is required for in utero-like transition of the blastocyst to the egg cylinder. Modeling the implanting embryo as a wetting droplet links embryo shape dynamics to the underlying changes in trophoblast adhesion and suggests that the adhesion-mediated tension release facilitates egg cylinder formation. Light-sheet live imaging and the experimental control of the engineered uterine geometry and trophoblast velocity uncovers the coordination between trophoblast motility and embryo growth, where the trophoblast delineates space for embryo morphogenesis.


Subject(s)
Blastocyst , Embryo Implantation , Female , Mice , Animals , Trophoblasts , Uterus , Embryonic Development , Mammals
3.
Nat Methods ; 20(5): 755-760, 2023 05.
Article in English | MEDLINE | ID: mdl-36997817

ABSTRACT

Brillouin microscopy can assess mechanical properties of biological samples in a three-dimensional (3D), all-optical and hence non-contact fashion, but its weak signals often lead to long imaging times and require an illumination dosage harmful for living organisms. Here, we present a high-resolution line-scanning Brillouin microscope for multiplexed and hence fast 3D imaging of dynamic biological processes with low phototoxicity. The improved background suppression and resolution, in combination with fluorescence light-sheet imaging, enables the visualization of the mechanical properties of cells and tissues over space and time in living organism models such as fruit flies, ascidians and mouse embryos.


Subject(s)
Embryonic Development , Microscopy , Animals , Mice , Microscopy/methods , Drosophila , Embryo, Nonmammalian , Imaging, Three-Dimensional/methods
4.
Nat Methods ; 20(12): 1900-1908, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932397

ABSTRACT

Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.


Subject(s)
Neural Networks, Computer , Organelles , Humans , Cryoelectron Microscopy/methods , Ligands , Organelles/ultrastructure , Electron Microscope Tomography/methods
5.
Nat Methods ; 20(12): 1971-1979, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884795

ABSTRACT

Brillouin microscopy is an emerging optical elastography technique capable of assessing mechanical properties of biological samples in a three-dimensional, all-optical and noncontact fashion. The typically weak Brillouin scattering signal can be substantially enhanced via a stimulated Brillouin scattering (SBS) process; however, current implementations require high pump powers, which prohibit applications to photosensitive or live imaging of biological samples. Here we present a pulsed SBS scheme that takes advantage of the nonlinearity of the pump-probe interaction. In particular, we show that the required pump laser power can be decreased ~20-fold without affecting the signal levels or spectral precision. We demonstrate the low phototoxicity and high specificity of our pulsed SBS approach by imaging, with subcellular detail, sensitive single cells, zebrafish larvae, mouse embryos and adult Caenorhabditis elegans. Furthermore, our method permits observing the mechanics of organoids and C. elegans embryos over time, opening up further possibilities for the field of mechanobiology.


Subject(s)
Caenorhabditis elegans , Microscopy , Animals , Mice , Zebrafish , Light , Lasers
6.
Cell ; 146(4): 568-81, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854982

ABSTRACT

Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis I in live mouse oocytes. We show that in acentrosomal oocytes, chromosome congression forms an intermediate chromosome configuration, the prometaphase belt, which precedes biorientation. Chromosomes then invade the elongating spindle center to form the metaphase plate and start biorienting. Close to 90% of all chromosomes undergo one or more rounds of error correction of their kinetochore-microtubule attachments before achieving correct biorientation. This process depends on Aurora kinase activity. Our analysis reveals the error-prone nature of homologous chromosome biorientation, providing a possible explanation for the high incidence of aneuploid eggs observed in mammals, including humans.


Subject(s)
Chromosome Segregation , Kinetochores/metabolism , Oocytes/cytology , Animals , Chromosomes/metabolism , Humans , Meiosis , Mice , Microtubules/metabolism
7.
Nature ; 587(7834): 377-386, 2020 11.
Article in English | MEDLINE | ID: mdl-32894860

ABSTRACT

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Subject(s)
Cell- and Tissue-Based Therapy , Delivery of Health Care/methods , Delivery of Health Care/trends , Medicine/methods , Medicine/trends , Pathology , Single-Cell Analysis , Artificial Intelligence , Delivery of Health Care/ethics , Delivery of Health Care/standards , Early Diagnosis , Education, Medical , Europe , Female , Health , Humans , Legislation, Medical , Male , Medicine/standards
8.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37756700

ABSTRACT

MOTIVATION: The nuclear pore complex (NPC) is the only passageway for macromolecules between nucleus and cytoplasm, and an important reference standard in microscopy: it is massive and stereotypically arranged. The average architecture of NPC proteins has been resolved with pseudoatomic precision, however observed NPC heterogeneities evidence a high degree of divergence from this average. Single-molecule localization microscopy (SMLM) images NPCs at protein-level resolution, whereupon image analysis software studies NPC variability. However, the true picture of this variability is unknown. In quantitative image analysis experiments, it is thus difficult to distinguish intrinsically high SMLM noise from variability of the underlying structure. RESULTS: We introduce CIR4MICS ('ceramics', Configurable, Irregular Rings FOR MICroscopy Simulations), a pipeline that synthesizes ground truth datasets of structurally variable NPCs based on architectural models of the true NPC. Users can select one or more N- or C-terminally tagged NPC proteins, and simulate a wide range of geometric variations. We also represent the NPC as a spring-model such that arbitrary deforming forces, of user-defined magnitudes, simulate irregularly shaped variations. Further, we provide annotated reference datasets of simulated human NPCs, which facilitate a side-by-side comparison with real data. To demonstrate, we synthetically replicate a geometric analysis of real NPC radii and reveal that a range of simulated variability parameters can lead to observed results. Our simulator is therefore valuable to test the capabilities of image analysis methods, as well as to inform experimentalists about the requirements of hypothesis-driven imaging studies. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/uhlmanngroup/cir4mics. Simulated data: BioStudies S-BSST1058.


Subject(s)
Microscopy , Nuclear Pore , Humans , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/analysis , Nuclear Pore Complex Proteins/metabolism , Single Molecule Imaging/methods , Software
9.
J Microsc ; 294(3): 397-410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691400

ABSTRACT

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Subject(s)
Research Personnel , Humans , Career Mobility , Biomedical Research/methods , Career Choice
10.
Cell ; 136(3): 435-46, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203579

ABSTRACT

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Subject(s)
Chromosomes/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Structure, Tertiary , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
11.
Nature ; 561(7723): 411-415, 2018 09.
Article in English | MEDLINE | ID: mdl-30202089

ABSTRACT

Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes1-4. Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries. Here we generate a canonical model of the morphological changes during the mitotic progression of human cells on the basis of four-dimensional image data. We use this model to integrate dynamic three-dimensional concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence correlation spectroscopy-calibrated microscopy5. The approach taken here to generate a dynamic protein atlas of human cell division is generic; it can be applied to systematically map and mine dynamic protein localization networks that drive cell division in different cell types, and can be conceptually transferred to other cellular functions.


Subject(s)
Cell Cycle Proteins/analysis , Cell Cycle Proteins/metabolism , Mitosis , Gene Editing , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Imaging, Three-Dimensional , Microscopy, Fluorescence , Molecular Imaging , Time Factors
12.
Nat Methods ; 17(2): 217-224, 2020 02.
Article in English | MEDLINE | ID: mdl-31932776

ABSTRACT

The ultimate goal of biological super-resolution fluorescence microscopy is to provide three-dimensional resolution at the size scale of a fluorescent marker. Here we show that by localizing individual switchable fluorophores with a probing donut-shaped excitation beam, MINFLUX nanoscopy can provide resolutions in the range of 1 to 3 nm for structures in fixed and living cells. This progress has been facilitated by approaching each fluorophore iteratively with the probing-donut minimum, making the resolution essentially uniform and isotropic over scalable fields of view. MINFLUX imaging of nuclear pore complexes of a mammalian cell shows that this true nanometer-scale resolution is obtained in three dimensions and in two color channels. Relying on fewer detected photons than standard camera-based localization, MINFLUX nanoscopy is poised to open a new chapter in the imaging of protein complexes and distributions in fixed and living cells.


Subject(s)
Color , Microscopy, Fluorescence/methods , Animals , Fluorescent Dyes/chemistry , Humans , Image Processing, Computer-Assisted
13.
Nat Methods ; 17(3): 279-282, 2020 03.
Article in English | MEDLINE | ID: mdl-32066961

ABSTRACT

We introduce an engineered nanobody whose affinity to green fluorescent protein (GFP) can be switched on and off with small molecules. By controlling the cellular localization of GFP fusion proteins, the engineered nanobody allows interrogation of their roles in basic biological processes, an approach that should be applicable to numerous previously described GFP fusions. We also outline how the binding affinities of other nanobodies can be controlled by small molecules.


Subject(s)
Green Fluorescent Proteins/chemistry , Immunoglobulin Fragments/chemistry , Nanoparticles/chemistry , Single-Domain Antibodies/chemistry , Crystallography, X-Ray , DNA/chemistry , Databases, Protein , Escherichia coli , Fluorescence Resonance Energy Transfer , Gene Products, gag/chemistry , HEK293 Cells , HIV-1/chemistry , HeLa Cells , Humans , Kinetics , Ligands , Microscopy, Fluorescence , Mitosis , Protein Domains , nef Gene Products, Human Immunodeficiency Virus/chemistry
14.
EMBO J ; 37(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29930102

ABSTRACT

Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.


Subject(s)
Acetyltransferases/metabolism , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/genetics , Minichromosome Maintenance Proteins/metabolism , Acetylation , Cell Cycle Proteins/metabolism , Humans , Mitosis/genetics , Cohesins
17.
Nat Methods ; 16(10): 1045-1053, 2019 10.
Article in English | MEDLINE | ID: mdl-31562488

ABSTRACT

Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.


Subject(s)
Microscopy, Fluorescence/standards , Nuclear Pore , Cell Line , Humans , Microscopy, Fluorescence/methods , Reference Standards
18.
PLoS Biol ; 17(3): e3000173, 2019 03.
Article in English | MEDLINE | ID: mdl-30840627

ABSTRACT

Chromosome segregation errors occur frequently during female meiosis but also in the first mitoses of mammalian preimplantation development. Such errors can lead to aneuploidy, spontaneous abortions, and birth defects. Some of the mechanisms underlying these errors in meiosis have been deciphered but which mechanisms could cause chromosome missegregation in the first embryonic cleavage divisions is mostly a "mystery". In this article, we describe the starting conditions and challenges of these preimplantation divisions, which might impair faithful chromosome segregation. We also highlight the pending research to provide detailed insight into the mechanisms and regulation of preimplantation mitoses.


Subject(s)
Aneuploidy , Chromosome Segregation/physiology , Embryonic Development/physiology , Animals , Blastocyst/metabolism , Blastocyst/physiology , Cell Cycle/genetics , Cell Cycle/physiology , Chromosome Segregation/genetics , Embryonic Development/genetics , Female , Meiosis/genetics , Meiosis/physiology , Pregnancy , Zygote/cytology , Zygote/metabolism
19.
Nature ; 535(7611): 308-12, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27362226

ABSTRACT

Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization.


Subject(s)
Chromosome Segregation , Chromosomes, Human/metabolism , Ki-67 Antigen/metabolism , Mitosis , Models, Biological , Surface-Active Agents/chemistry , Biomechanical Phenomena , Cell Compartmentation , Chromatin/metabolism , Chromosomes, Human/chemistry , Humans , Ki-67 Antigen/chemistry , Ki-67 Antigen/genetics , Nuclear Envelope/metabolism , Protein Structure, Tertiary , RNA Interference , Solvents/chemistry , Spindle Apparatus/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL