Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Orthop Res ; 41(2): 386-395, 2023 02.
Article in English | MEDLINE | ID: mdl-35578981

ABSTRACT

Adolescent obesity has risen dramatically in the last few decades. While adult obesity may be osteoprotective, the effects of obesity during adolescence, which is a period of massive bone accrual, are not clear. We used a murine model of induced adolescent obesity to examine the structural, mechanical, and compositional differences between obese and healthy weight bone in 16-week-old female C57Bl6 mice. We also examined the effects of a return to normal weight after skeletal maturity (24 weeks old). We found obese adolescent bone exhibited decreased trabecular bone volume, increased cortical diameter, increased ultimate stress, and increased brittleness (decreased plastic energy to fracture), similar to an aging phenotype. The trabecular bone deficits remained after return to normal weight after skeletal maturity. However, after returning to normal diet, there was no difference in ultimate stress nor plastic energy to fracture between groups as the normal diet group increased ultimate stress and brittleness. Interestingly, compositional changes appeared in the former high-fat diet mice after skeletal maturity with a lower mineral to matrix ratio compared to normal diet mice. In addition there was a trend toward increased fluorescent advanced glycation endproducts in the former high-fat diet mice compared to normal diet mice but this did not reach significance (p < 0.05) due to the large variability. The skeletal consequences of adolescent obesity may have lasting implications for the adult skeleton even after return to normal weight. Given the rates of adolescent obesity, skeletal health should be a concern.


Subject(s)
Fractures, Bone , Pediatric Obesity , Animals , Female , Mice , Mice, Inbred C57BL , Bone and Bones , Cancellous Bone , Diet, High-Fat/adverse effects , Bone Density
2.
J Biomech ; 124: 110569, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34171678

ABSTRACT

An upward trend in childhood obesity implies a great need to determine its effects, both immediate and long-term. Obesity is osteoprotective in adults, but we know very little about the effects of obesity on the growing skeleton, particularly its ability to adapt to load. The objective of this research is to assess bone mechanoadaptation in adolescent obese mice. Ten mice were fed a high-fat diet (HFD) from 4 to 16 weeks of age, while a control group of the same size received a normal diet (ND). At 14 weeks of age, right tibiae were cyclically loaded with a 12 N peak load for HFD mice and a 9 N peak load for ND mice three times a week for two weeks, resulting in equal peak strains of about 2500 microstrain. At 16 weeks of age, mice were sacrificed, and tibiae and gonadal fat pads were dissected. Fat pads were weighed as an obesity indicator, and tibiae were imaged with microCT to measure bone structure. The left tibiae (nonloaded) were subsequently decalcified, stained with osmium, and scanned to quantify marrow fat. Results showed that HFD mice had larger tibial cross-sectional areas compared to ND mice, as well as greater marrow adiposity. However, there was no significant difference in the amount of bone adaptation in the cortical or trabecular bone between the two groups. This indicates that the bones of HFD and ND mice adapt equally well to loading.


Subject(s)
Diet, High-Fat , Pediatric Obesity , Adipose Tissue , Animals , Bone and Bones , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Tibia/diagnostic imaging
3.
Sci Rep ; 9(1): 13989, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562366

ABSTRACT

Visual impairment affects 253 million people worldwide and new approaches for prevention and treatment are urgently needed. While small molecules with potential beneficial effects can be examined in various model systems, the in vivo evaluation of visual function remains a challenge. The current study introduces a novel imaging system for measuring visually-guided behaviors in larval zebrafish. The imaging system is the first to image four 96-well plates with a single camera for automated measurements of activity in a 384-well format. In addition, it is the first system to project moving visual stimuli and analyze the optomotor response in the wells of a 96-well plate. We found that activity is affected by tricaine, diazepam and flumazenil. Surprisingly, diazepam treatments induce a loss of visual responses, at concentrations that do not affect activity or induce hyperactivity. Overall, our studies show that the developed imaging system is suitable for automated measurements of vertebrate vision in a high-throughput format.


Subject(s)
Behavior, Animal/physiology , Vision, Ocular/physiology , Zebrafish/physiology , Aminobenzoates/pharmacology , Anesthetics/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Diazepam/pharmacology , Larva/drug effects , Larva/physiology , Software , Swimming/physiology , Vision, Ocular/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL