Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
2.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
3.
Gut ; 73(2): 325-337, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37788895

ABSTRACT

OBJECTIVE: Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN: Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS: NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION: Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.


Subject(s)
Cholangitis, Sclerosing , Humans , Haplotypes , Cholangitis, Sclerosing/genetics , HLA-DP alpha-Chains/genetics , Killer Cells, Natural
4.
Hum Mol Genet ; 30(5): 356-369, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33555323

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Genetic association studies have identified the highly variable human leukocyte antigen (HLA) region as the strongest susceptibility locus for IBD and specifically DRB1*01:03 as a determining factor for ulcerative colitis (UC). However, for most of the association signal such as delineation could not be made because of tight structures of linkage disequilibrium within the HLA. The aim of this study was therefore to further characterize the HLA signal using a transethnic approach. We performed a comprehensive fine mapping of single HLA alleles in UC in a cohort of 9272 individuals with African American, East Asian, Puerto Rican, Indian and Iranian descent and 40 691 previously analyzed Caucasians, additionally analyzing whole HLA haplotypes. We computationally characterized the binding of associated HLA alleles to human self-peptides and analyzed the physicochemical properties of the HLA proteins and predicted self-peptidomes. Highlighting alleles of the HLA-DRB1*15 group and their correlated HLA-DQ-DR haplotypes, we not only identified consistent associations (regarding effects directions/magnitudes) across different ethnicities but also identified population-specific signals (regarding differences in allele frequencies). We observed that DRB1*01:03 is mostly present in individuals of Western European descent and hardly present in non-Caucasian individuals. We found peptides predicted to bind to risk HLA alleles to be rich in positively charged amino acids. We conclude that the HLA plays an important role for UC susceptibility across different ethnicities. This research further implicates specific features of peptides that are predicted to bind risk and protective HLA proteins.


Subject(s)
Colitis, Ulcerative/genetics , Ethnicity/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , HLA-DQ Antigens/genetics , HLA-DRB1 Chains/genetics , Peptides/genetics , Alleles , Cohort Studies , Gene Frequency , Genetic Association Studies , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Protein Binding
5.
Hum Mol Genet ; 28(12): 2078-2092, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30590525

ABSTRACT

Genotype imputation of the human leukocyte antigen (HLA) region is a cost-effective means to infer classical HLA alleles from inexpensive and dense SNP array data. In the research setting, imputation helps avoid costs for wet lab-based HLA typing and thus renders association analyses of the HLA in large cohorts feasible. Yet, most HLA imputation reference panels target Caucasian ethnicities and multi-ethnic panels are scarce. We compiled a high-quality multi-ethnic reference panel based on genotypes measured with Illumina's Immunochip genotyping array and HLA types established using a high-resolution next generation sequencing approach. Our reference panel includes more than 1,300 samples from Germany, Malta, China, India, Iran, Japan and Korea and samples of African American ancestry for all classical HLA class I and II alleles including HLA-DRB3/4/5. Applying extensive cross-validation, we benchmarked the imputation using the HLA imputation tool HIBAG, our multi-ethnic reference and an independent, previously published data set compiled of subpopulations of the 1000 Genomes project. We achieved average imputation accuracies higher than 0.924 for the commonly studied HLA-A, -B, -C, -DQB1 and -DRB1 genes across all ethnicities. We investigated allele-specific imputation challenges in regard to geographic origin of the samples using sensitivity and specificity measurements as well as allele frequencies and identified HLA alleles that are challenging to impute for each of the populations separately. In conclusion, our new multi-ethnic reference data set allows for high resolution HLA imputation of genotypes at all classical HLA class I and II genes including the HLA-DRB3/4/5 loci based on diverse ancestry populations.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Black or African American/ethnology , Black or African American/genetics , Alleles , Asian People , Benchmarking , Cluster Analysis , Ethnicity , Gene Frequency , Genotype , HLA Antigens/genetics , HLA-DRB3 Chains/genetics , HLA-DRB4 Chains/genetics , HLA-DRB5 Chains/genetics , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Single Nucleotide , Retrospective Studies , White People/ethnology , White People/genetics
6.
J Allergy Clin Immunol ; 145(4): 1208-1218, 2020 04.
Article in English | MEDLINE | ID: mdl-31707051

ABSTRACT

BACKGROUND: Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants. OBJECTIVE: We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence. METHODS: We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects. RESULTS: An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues. CONCLUSION: Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Dermatitis, Atopic/genetics , Genotype , Orexin Receptors/genetics , Phosphoproteins/genetics , Skin/metabolism , Adult , Cohort Studies , Filaggrin Proteins , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Organ Specificity , Polymorphism, Genetic , Risk , Transcriptome
7.
J Immunol ; 201(12): 3780-3792, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30429288

ABSTRACT

In transplantation, development of humoral alloimmunity against donor HLA is a major cause of organ transplant failure, but our ability to assess the immunological risk associated with a potential donor-recipient HLA combination is limited. We hypothesized that the capacity of donor HLA to induce a specific alloantibody response depends on their structural and physicochemical dissimilarity compared with recipient HLA. To test this hypothesis, we first developed a novel computational scoring system that enables quantitative assessment of surface electrostatic potential differences between donor and recipient HLA molecules at the tertiary structure level [three-dimensional electrostatic mismatch score (EMS-3D)]. We then examined humoral alloimmune responses in healthy females subjected to a standardized injection of donor lymphocytes from their male partner. This analysis showed a strong association between the EMS-3D of donor HLA and donor-specific alloantibody development; this relationship was strongest for HLA-DQ alloantigens. In the clinical transplantation setting, the immunogenic potential of HLA-DRB1 and -DQ mismatches expressed on donor kidneys, as assessed by their EMS-3D, was an independent predictor of development of donor-specific alloantibody after graft failure. Collectively, these findings demonstrate the translational potential of our approach to improve immunological risk assessment and to decrease the burden of humoral alloimmunity in organ transplantation.


Subject(s)
Graft Rejection/immunology , HLA-DQ Antigens/chemistry , HLA-DRB1 Chains/chemistry , Immunity, Humoral , Isoantibodies/biosynthesis , Isoantigens/chemistry , Kidney Transplantation , Female , Graft Rejection/diagnosis , HLA-DQ Antigens/immunology , HLA-DRB1 Chains/immunology , Histocompatibility , Histocompatibility Testing , Humans , Isoantigens/immunology , Male , Static Electricity , Tissue Donors , Transplant Recipients
8.
Hum Mol Genet ; 26(21): 4301-4313, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28973304

ABSTRACT

Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 controls, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at TNFSF15 (rs6478108; P = 1.50 × 10-8, OR = 1.10), and association of common protein-altering variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective rare variants (minor allele frequency < 0.01) via gene-wide aggregation testing (IFIH1: pburden = 2.53 × 10-7, OR = 0.707; TYK2: pburden = 6.17 × 10-4, OR = 0.744). Both genes play significant roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential mechanisms through which their effect may be exerted.


Subject(s)
Psoriasis/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Alleles , Case-Control Studies , Cohort Studies , Exome , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Psoriasis/physiopathology , Risk Factors , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Exome Sequencing
9.
Exp Dermatol ; 28(5): 623-627, 2019 05.
Article in English | MEDLINE | ID: mdl-30921485

ABSTRACT

Psoriasis is a chronic inflammatory disorder of the skin, with genetic factors reportedly involved in the disease pathogenesis. Numerous studies reported psoriasis candidate genes. However, these tend to involve mostly in the European and Asian populations. Here, we report the first genome-wide association study (GWAS) in an Egyptian population, identifying susceptibility variants for psoriasis using a two-stage case-control design. In the first discovery stage, we carried out a genome-wide association analysis using the Infinium® Global Screening Array-24 v1.0, on 253 cases and 449 control samples of Egyptian descent. In the second replication stage, 26 single-nucleotide polymorphisms (SNPs) were selected for replication in additional 321 cases and 253 controls. In concordance with the findings from previous studies on other populations, we found a genome-wide significant association between the MHC locus and the disease at rs12199223 (Pcomb  = 6.57 × 10-18 ) and rs1265181 (Pcomb  = 1.03 × 10-10 ). Additionally, we identified a novel significant association with the disease at locus, 4q32.1 (rs12650590, Pcomb  = 4.49 × 10-08 ) in the vicinity of gene GUCY1A3, and multiple suggestive associations, for example rs10832027 (Pcomb  = 7.28 × 10-06 ) and rs3770019 (Pcomb  = 1.02 × 10-05 ). This proposes the existence of important interethnic genetic differences in psoriasis susceptibility. Further studies are necessary to elucidate the downstream pathways of the new candidate loci.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Case-Control Studies , Egypt/epidemiology , Female , Genome, Human , Genome-Wide Association Study , Genotype , Humans , Inflammation , Major Histocompatibility Complex , Male , Oligonucleotide Array Sequence Analysis , Risk
10.
J Allergy Clin Immunol ; 141(5): 1668-1676.e16, 2018 05.
Article in English | MEDLINE | ID: mdl-29421277

ABSTRACT

BACKGROUND: Genomic approaches have revealed characteristic site specificities of skin bacterial community structures. In addition, in children with atopic dermatitis (AD), characteristic shifts were described at creases and, in particular, during flares, which have been postulated to mirror disturbed skin barrier function, cutaneous inflammation, or both. OBJECTIVE: We sought to comprehensively analyze microbial configurations in patients with AD across body sites and to explore the effect of distinct abnormalities of epidermal barrier function. METHODS: The skin microbiome was determined by using bacterial 16S rRNA sequencing at 4 nonlesional body sites, as well as acute and chronic lesions of 10 patients with AD and 10 healthy control subjects matched for age, sex, and filaggrin (FLG) mutation status. Nonlesional sampling sites were characterized for skin physiology parameters, including chromatography-based lipid profiling. RESULTS: Epidermal lipid composition, in particular levels of long-chain unsaturated free fatty acids, strongly correlated with bacterial composition, in particular Propionibacteria and Corynebacteria abundance. AD displayed a distinct community structure, with increased abundance and altered composition of staphylococcal species across body sites, the strongest loss of diversity and increase in Staphylococcus aureus seen on chronic lesions, and a progressive shift from nonlesional skin to acute and chronic lesions. FLG-deficient skin showed a distinct microbiome composition resembling in part the AD-related pattern. CONCLUSION: Epidermal barrier integrity and function affect the skin microbiome composition. AD shows an altered microbial configuration across diverse body sites, which is most pronounced at sites of predilection and AD. Eczematous affection appears to be a more important determinant than body site.


Subject(s)
Eczema/microbiology , Eczema/pathology , Epidermis/microbiology , Epidermis/pathology , Inflammation/microbiology , Inflammation/pathology , Lipids/physiology , Adult , Case-Control Studies , Dermatitis, Atopic/genetics , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/pathology , Eczema/genetics , Female , Filaggrin Proteins , Humans , Inflammation/genetics , Intermediate Filament Proteins/genetics , Male , Microbiota/physiology , Middle Aged , RNA, Ribosomal, 16S/genetics , Skin Physiological Phenomena/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/genetics , Young Adult
11.
Am J Hum Genet ; 97(4): 593-607, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26430804

ABSTRACT

Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune conditions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypothesized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic, which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large cohorts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and insights for many diseases. We present KIR∗IMP, a method for imputation of KIR copy number. We show that KIR∗IMP is highly accurate and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease.


Subject(s)
Asthma/genetics , DNA Copy Number Variations/genetics , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Receptors, KIR/classification , Receptors, KIR/genetics , Case-Control Studies , Cohort Studies , Europe , Family , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Sequence Analysis, DNA
12.
Am J Hum Genet ; 97(6): 816-36, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26626624

ABSTRACT

Psoriasis vulgaris (PsV) is a common inflammatory and hyperproliferative skin disease. Up to 30% of people with PsV eventually develop psoriatic arthritis (PsA), an inflammatory musculoskeletal condition. To discern differences in genetic risk factors for PsA and cutaneous-only psoriasis (PsC), we carried out a genome-wide association study (GWAS) of 1,430 PsA case subjects and 1,417 unaffected control subjects. Meta-analysis of this study with three other GWASs and two targeted genotyping studies, encompassing a total of 9,293 PsV case subjects, 3,061 PsA case subjects, 3,110 PsC case subjects, and 13,670 unaffected control subjects of European descent, detected 10 regions associated with PsA and 11 with PsC at genome-wide (GW) significance. Several of these association signals (IFNLR1, IFIH1, NFKBIA for PsA; TNFRSF9, LCE3C/B, TRAF3IP2, IL23A, NFKBIA for PsC) have not previously achieved GW significance. After replication, we also identified a PsV-associated SNP near CDKAL1 (rs4712528, odds ratio [OR] = 1.16, p = 8.4 × 10(-11)). Among identified psoriasis risk variants, three were more strongly associated with PsC than PsA (rs12189871 near HLA-C, p = 5.0 × 10(-19); rs4908742 near TNFRSF9, p = 0.00020; rs10888503 near LCE3A, p = 0.0014), and two were more strongly associated with PsA than PsC (rs12044149 near IL23R, p = 0.00018; rs9321623 near TNFAIP3, p = 0.00022). The PsA-specific variants were independent of previously identified psoriasis variants near IL23R and TNFAIP3. We also found multiple independent susceptibility variants in the IL12B, NOS2, and IFIH1 regions. These results provide insights into the pathogenetic similarities and differences between PsC and PsA.


Subject(s)
Arthritis, Psoriatic/genetics , Genetic Loci , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Adolescent , Adult , Arthritis, Psoriatic/pathology , Bayes Theorem , Case-Control Studies , Cornified Envelope Proline-Rich Proteins/genetics , DNA-Binding Proteins/genetics , Female , Genome-Wide Association Study , HLA-C Antigens/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Linkage Disequilibrium , Male , Nuclear Proteins/genetics , Psoriasis/pathology , Receptors, Interleukin/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor alpha-Induced Protein 3
13.
Am J Hum Genet ; 96(1): 104-20, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25574825

ABSTRACT

Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21-22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features.


Subject(s)
Comparative Genomic Hybridization , Dermatitis, Atopic/genetics , Genome-Wide Association Study , Psoriasis/genetics , Alleles , Case-Control Studies , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 6/genetics , Cohort Studies , Genetic Loci , Humans , Logistic Models , Major Histocompatibility Complex/genetics , Polymorphism, Single Nucleotide , Quality Control , Reproducibility of Results
14.
Scand J Gastroenterol ; 53(10-11): 1264-1273, 2018.
Article in English | MEDLINE | ID: mdl-30353760

ABSTRACT

OBJECTIVE: Activating mutations in the GUCY2C gene, which encodes the epithelial receptor guanylate cyclase C, cause diarrhea due to increased loss of sodium chloride to the intestinal lumen. Patients with familial GUCY2C diarrhea syndrome (FGDS) are predisposed to inflammatory bowel disease (IBD). We investigated whether genes in the guanylate cyclase C pathway are enriched for association with IBD and reversely whether genetic or transcriptional changes associated with IBD are found in FGDS patients. METHODS: (1) A set of 27 genes from the guanylate cyclase C pathway was tested for enrichment of association with IBD by Gene Set Enrichment Analysis, using genome-wide association summary statistics from 12,882 IBD patients and 21,770 controls. (2) We genotyped 163 known IBD risk loci and sequenced NOD2 in 22 patients with FGDS. Eight of them had concomitant Crohn's disease. (3) Global gene expression analysis was performed in ileal tissue from patients with FGDS, Crohn's disease and healthy individuals. RESULTS: The guanylate cyclase C gene set showed a significant enrichment of association in IBD genome-wide association data. Risk variants in NOD2 were found in 7/8 FGDS patients with concomitant Crohn's disease and in 2/14 FDGS patients without Crohn's disease. In ileal tissue, downregulation of metallothioneins characterized FGDS patients compared to healthy controls. CONCLUSIONS: Our results support a role of guanylate cyclase C signaling and disturbed electrolyte homeostasis in development of IBD. Furthermore, downregulation of metallothioneins in the ileal mucosa of FGDS patients may contribute to IBD development, possibly alongside effects from NOD2 risk variants.


Subject(s)
Diarrhea/genetics , Inflammatory Bowel Diseases/genetics , Receptors, Enterotoxin/genetics , Adult , Aged , Case-Control Studies , Diarrhea/metabolism , Down-Regulation , Family Health , Female , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Ileum/pathology , Inflammatory Bowel Diseases/complications , Male , Middle Aged , Nod2 Signaling Adaptor Protein/genetics , Norway , Plasma/chemistry , Risk Assessment , Syndrome , Young Adult
15.
Am J Med Genet B Neuropsychiatr Genet ; 177(7): 641-657, 2018 10.
Article in English | MEDLINE | ID: mdl-30325587

ABSTRACT

Individuals with psychiatric disorders have elevated rates of autoimmune comorbidity and altered immune signaling. It is unclear whether these altered immunological states have a shared genetic basis with those psychiatric disorders. The present study sought to use existing summary-level data from previous genome-wide association studies to determine if commonly varying single nucleotide polymorphisms are shared between psychiatric and immune-related phenotypes. We estimated heritability and examined pair-wise genetic correlations using the linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics methods. Using LDSC, we observed significant genetic correlations between immune-related disorders and several psychiatric disorders, including anorexia nervosa, attention deficit-hyperactivity disorder, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia, smoking behavior, and Tourette syndrome. Loci significantly mediating genetic correlations were identified for schizophrenia when analytically paired with Crohn's disease, primary biliary cirrhosis, systemic lupus erythematosus, and ulcerative colitis. We report significantly correlated loci and highlight those containing genome-wide associations and candidate genes for respective disorders. We also used the LDSC method to characterize genetic correlations among the immune-related phenotypes. We discuss our findings in the context of relevant genetic and epidemiological literature, as well as the limitations and caveats of the study.


Subject(s)
Autoimmune Diseases/genetics , Mental Disorders/genetics , Autoimmune Diseases/physiopathology , Comorbidity , Databases, Factual , Female , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium , Male , Mental Disorders/physiopathology , Multifactorial Inheritance , Polymorphism, Single Nucleotide , White People/genetics
16.
Am J Hum Genet ; 95(2): 162-72, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25087609

ABSTRACT

Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C(∗)06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10(-364)). Stepwise analysis revealed multiple HLA-C(∗)06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C(∗)12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQα1 amino acid position 53; p < 5.0 × 10(-8)), but no apparent risk conferred by MICA. We further evaluated risk of two major clinical subtypes of PsV, psoriatic arthritis (PsA; n = 3,038) and cutaneous psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (Pomnibus = 2.2 × 10(-11)), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Major Histocompatibility Complex/genetics , Psoriasis/genetics , Amino Acid Sequence , Arthritis, Psoriatic/genetics , Base Sequence , Chromosome Mapping/methods , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , HLA-B Antigens/genetics , HLA-C Antigens/genetics , Humans , Polymorphism, Single Nucleotide , Psoriasis/classification , Psoriasis/immunology
17.
Nucleic Acids Res ; 43(11): e70, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-25753671

ABSTRACT

The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Histocompatibility Testing/methods , Sequence Analysis, DNA/methods , Alleles , HLA Antigens/genetics , Humans , Software
18.
Hum Mol Genet ; 23(3): 590-601, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24045615

ABSTRACT

Acute lymphoblastic leukemia (ALL) accounts for ∼25% of pediatric malignancies. Of interest, the incidence of ALL is observed ∼20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5' region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ∼30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls.


Subject(s)
Carrier Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recombinases/genetics , V(D)J Recombination , Adolescent , Basic Helix-Loop-Helix Transcription Factors/genetics , Child , Child, Preschool , Cohort Studies , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Deletion , Humans , Infant , Male , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1 , ETS Translocation Variant 6 Protein
19.
Am J Respir Crit Care Med ; 192(6): 727-36, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26051272

ABSTRACT

RATIONALE: Genetic variation plays a significant role in the etiology of sarcoidosis. However, only a small fraction of its heritability has been explained so far. OBJECTIVES: To define further genetic risk loci for sarcoidosis, we used the Immunochip for a candidate gene association study of immune-associated loci. METHODS: Altogether the study population comprised over 19,000 individuals. In a two-stage design, 1,726 German sarcoidosis cases and 5,482 control subjects were genotyped for 128,705 single-nucleotide polymorphisms using the Illumina Immunochip for the screening step. The remaining 3,955 cases, 7,514 control subjects, and 684 parents of affected offspring were used for validation and replication of 44 candidate and two established risk single-nucleotide polymorphisms. MEASUREMENTS AND MAIN RESULTS: Four novel susceptibility loci were identified with genome-wide significance in the European case-control populations, located on chromosomes 12q24.12 (rs653178; ATXN2/SH2B3), 5q33.3 (rs4921492; IL12B), 4q24 (rs223498; MANBA/NFKB1), and 2q33.2 (rs6748088; FAM117B). We further defined three independent association signals in the HLA region with genome-wide significance, peaking in the BTNL2 promoter region (rs5007259), at HLA-B (rs4143332/HLA-B*0801) and at HLA-DPB1 (rs9277542), and found another novel independent signal near IL23R (rs12069782) on chromosome 1p31.3. CONCLUSIONS: Functional predictions and protein network analyses suggest a prominent role of the drug-targetable IL23/Th17 signaling pathway in the genetic etiology of sarcoidosis. Our findings reveal a substantial genetic overlap of sarcoidosis with diverse immune-mediated inflammatory disorders, which could be of relevance for the clinical application of modern therapeutics.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Sarcoidosis/genetics , Adult , Black or African American/genetics , Aged , Case-Control Studies , Europe , Female , Genetic Markers , Genotype , Humans , Male , Middle Aged , Sarcoidosis/ethnology , Sarcoidosis/immunology , White People/genetics
20.
Am J Hum Genet ; 90(4): 636-47, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22482804

ABSTRACT

Psoriasis (PS) and Crohn disease (CD) have been shown to be epidemiologically, pathologically, and therapeutically connected, but little is known about their shared genetic causes. We performed meta-analyses of five published genome-wide association studies on PS (2,529 cases and 4,955 controls) and CD (2,142 cases and 5,505 controls), followed up 20 loci that showed strongest evidence for shared disease association and, furthermore, tested cross-disease associations for previously reported PS and CD risk alleles in additional 6,115 PS cases, 4,073 CD cases, and 10,100 controls. We identified seven susceptibility loci outside the human leukocyte antigen region (9p24 near JAK2, 10q22 at ZMIZ1, 11q13 near PRDX5, 16p13 near SOCS1, 17q21 at STAT3, 19p13 near FUT2, and 22q11 at YDJC) shared between PS and CD with genome-wide significance (p < 5 × 10(-8)) and confirmed four already established PS and CD risk loci (IL23R, IL12B, REL, and TYK2). Three of the shared loci are also genome-wide significantly associated with PS alone (10q22 at ZMIZ1, p(rs1250544) = 3.53 × 10(-8), 11q13 near PRDX5, p(rs694739) = 3.71 × 10(-09), 22q11 at YDJC, p(rs181359) = 8.02 × 10(-10)). In addition, we identified one susceptibility locus for CD (16p13 near SOCS1, p(rs4780355) = 4.99 × 10(-8)). Refinement of association signals identified shared genome-wide significant associations for exonic SNPs at 10q22 (ZMIZ1) and in silico expression quantitative trait locus analyses revealed that the associations at ZMIZ1 and near SOCS1 have a potential functional effect on gene expression. Our results show the usefulness of joint analyses of clinically distinct immune-mediated diseases and enlarge the map of shared genetic risk loci.


Subject(s)
Crohn Disease/genetics , Genetic Loci , Genetic Predisposition to Disease/genetics , Psoriasis/genetics , Exons/genetics , Female , Gene Expression/genetics , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL