Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Br J Nutr ; 100(5): 947-52, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18384705

ABSTRACT

Fructose consumption in the USA has increased over the past three decades. During this time, obesity, insulin resistance and the metabolic syndrome have also increased in prevalence. While diets high in fructose have been shown to promote insulin resistance and increase TAG concentrations in animals, there are insufficient data available regarding the long-term metabolic effects of fructose consumption in humans. The objective of the present study was to investigate the metabolic effects of 10-week consumption of fructose-sweetened beverages in human subjects under energy-balanced conditions in a controlled research setting. Following a 4-week weight-maintaining complex carbohydrate diet, seven overweight or obese (BMI 26.8-33.3 kg/m2) postmenopausal women were fed an isoenergetic intervention diet, which included a fructose-sweetened beverage with each meal, for 10 weeks. The intervention diet provided 15 % of energy from protein, 30 % from fat and 55 % from carbohydrate (30 % complex carbohydrate, 25 % fructose). Fasting and postprandial glucose, insulin, TAG and apoB concentrations were measured. Fructose consumption increased fasting glucose concentrations and decreased meal-associated glucose and insulin responses (P = 0.0002, P = 0.007 and P = 0.013, respectively). Moreover, after 10 weeks of fructose consumption, 14 h postprandial TAG profiles were significantly increased, with the area under the curve at 10 weeks being 141 % higher than at baseline (P = 0.04). Fructose also increased fasting apoB concentrations by 19 % (P = 0.043 v. baseline). In summary, consumption of fructose-sweetened beverages increased postprandial TAG and fasting apoB concentrations, and the present results suggest that long-term consumption of diets high in fructose could lead to an increased risk of CVD.


Subject(s)
Dietary Carbohydrates/adverse effects , Fructose/adverse effects , Obesity/blood , Overweight/blood , Aged , Analysis of Variance , Apolipoproteins B/blood , Area Under Curve , Beverages , Biomarkers/blood , Blood Glucose/analysis , Female , Humans , Insulin/blood , Lipids/blood , Middle Aged , Postprandial Period , Time , Triglycerides/blood
2.
J Clin Endocrinol Metab ; 89(6): 2963-72, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15181085

ABSTRACT

Previous studies indicate that leptin secretion is regulated by insulin-mediated glucose metabolism. Because fructose, unlike glucose, does not stimulate insulin secretion, we hypothesized that meals high in fructose would result in lower leptin concentrations than meals containing the same amount of glucose. Blood samples were collected every 30-60 min for 24 h from 12 normal-weight women on 2 randomized days during which the subjects consumed three meals containing 55, 30, and 15% of total kilocalories as carbohydrate, fat, and protein, respectively, with 30% of kilocalories as either a fructose-sweetened [high fructose (HFr)] or glucose-sweetened [high glucose (HGl)] beverage. Meals were isocaloric in the two treatments. Postprandial glycemic excursions were reduced by 66 +/- 12%, and insulin responses were 65 +/- 5% lower (both P < 0.001) during HFr consumption. The area under the curve for leptin during the first 12 h (-33 +/- 7%; P < 0.005), the entire 24 h (-21 +/- 8%; P < 0.02), and the diurnal amplitude (peak - nadir) (24 +/- 6%; P < 0.0025) were reduced on the HFr day compared with the HGl day. In addition, circulating levels of the orexigenic gastroenteric hormone, ghrelin, were suppressed by approximately 30% 1-2 h after ingestion of each HGl meal (P < 0.01), but postprandial suppression of ghrelin was significantly less pronounced after HFr meals (P < 0.05 vs. HGl). Consumption of HFr meals produced a rapid and prolonged elevation of plasma triglycerides compared with the HGl day (P < 0.005). Because insulin and leptin, and possibly ghrelin, function as key signals to the central nervous system in the long-term regulation of energy balance, decreases of circulating insulin and leptin and increased ghrelin concentrations, as demonstrated in this study, could lead to increased caloric intake and ultimately contribute to weight gain and obesity during chronic consumption of diets high in fructose.


Subject(s)
Fructose/adverse effects , Insulin/blood , Leptin/blood , Peptide Hormones/blood , Triglycerides/blood , Adult , Blood Glucose , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/adverse effects , Fatty Acids, Nonesterified/blood , Female , Fructose/administration & dosage , Gastric Inhibitory Polypeptide/blood , Ghrelin , Glucagon/blood , Glucagon-Like Peptide 1 , Glucose/administration & dosage , Humans , Liver/metabolism , Peptide Fragments/blood , Postprandial Period/drug effects , Protein Precursors/blood
3.
Am J Clin Nutr ; 76(5): 911-22, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12399260

ABSTRACT

This review explores whether fructose consumption might be a contributing factor to the development of obesity and the accompanying metabolic abnormalities observed in the insulin resistance syndrome. The per capita disappearance data for fructose from the combined consumption of sucrose and high-fructose corn syrup have increased by 26%, from 64 g/d in 1970 to 81 g/d in 1997. Both plasma insulin and leptin act in the central nervous system in the long-term regulation of energy homeostasis. Because fructose does not stimulate insulin secretion from pancreatic beta cells, the consumption of foods and beverages containing fructose produces smaller postprandial insulin excursions than does consumption of glucose-containing carbohydrate. Because leptin production is regulated by insulin responses to meals, fructose consumption also reduces circulating leptin concentrations. The combined effects of lowered circulating leptin and insulin in individuals who consume diets that are high in dietary fructose could therefore increase the likelihood of weight gain and its associated metabolic sequelae. In addition, fructose, compared with glucose, is preferentially metabolized to lipid in the liver. Fructose consumption induces insulin resistance, impaired glucose tolerance, hyperinsulinemia, hypertriacylglycerolemia, and hypertension in animal models. The data in humans are less clear. Although there are existing data on the metabolic and endocrine effects of dietary fructose that suggest that increased consumption of fructose may be detrimental in terms of body weight and adiposity and the metabolic indexes associated with the insulin resistance syndrome, much more research is needed to fully understand the metabolic effect of dietary fructose in humans.


Subject(s)
Dietary Carbohydrates/adverse effects , Fructose , Metabolic Syndrome/etiology , Weight Gain/drug effects , Animals , Fructose/metabolism , Humans , Hyperlipidemias/etiology , Hypertension/etiology
SELECTION OF CITATIONS
SEARCH DETAIL