Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31863590

ABSTRACT

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Subject(s)
DNA-Binding Proteins/metabolism , Proteostasis/genetics , RNA, Long Noncoding/genetics , Short Interspersed Nucleotide Elements/genetics , Apoptosis , Cell Line , Cytoplasm/metabolism , DNA Damage , Endoplasmic Reticulum Stress , Enzyme Activation , Gene Dosage , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Mitosis , Models, Biological , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion/genetics , eIF-2 Kinase
SELECTION OF CITATIONS
SEARCH DETAIL