Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Ecotoxicol Environ Saf ; 124: 96-104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26476330

ABSTRACT

Phthalate esters are plasticizers frequently found in wastewater effluents. Previous studies on phthalates have reported anti-androgenic activity in mammals, causing concerns of their potential effects on the reproduction of aquatic organisms. Another group of environmental endocrine disrupters, steroidal estrogens, are known to inhibit steroid biosynthesis in the gonads, but the effects related to spermatogenesis are not well understood in fish. In this study, three-spined sticklebacks were exposed to di-n-butyl phthalate (DBP) and 17α ethinyl-oestradiol (EE2) at nominal concentrations 35µg/L and 40ng/L, respectively, for four days. The aim of the study was to obtain insight into the acute transcriptional responses putatively associated with endocrine disruption. RNA samples from eight individual male fish per treatment (including controls) were used in microarray analysis, covering the expression of approximately 21,000 genes. In the EE2 treatment the results show transcriptional downregulation of genes associated with steroid biosynthesis pathway and up-regulation of genes involved in pathways related to epidermal growth factor signaling and xenobiotic metabolism. The transcriptional response to DBP was in general weaker than to EE2, but based on enrichment analysis, we suggest adverse effects on retinoid metabolism, creatine kinase activity and cell adhesion. Among the genes showing highest fold changes after DBP treatment compared to control was the teleost fish -specific cytochrome P450 17A2. Overall, this study promotes our understanding on molecular responses to anti-androgens and estrogens in fish testes.


Subject(s)
Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Ethinyl Estradiol/toxicity , Plasticizers/toxicity , Smegmamorpha/genetics , Testis/drug effects , Androgen Antagonists/toxicity , Animals , Down-Regulation , Estrogens/toxicity , Gene Expression Regulation/drug effects , Male , Microarray Analysis , Testis/metabolism , Up-Regulation , Water Pollutants, Chemical/toxicity
2.
Sci Total Environ ; 788: 147868, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134389

ABSTRACT

The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.


Subject(s)
Ecosystem , Introduced Species , Animals , Aquatic Organisms , Climate Change , Fresh Water
3.
Metabolites ; 7(1)2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28216558

ABSTRACT

The endogenous metabolites excreted by organisms into their surrounding environment, termed the exometabolome, are important for many processes including chemical communication. In fish biology, such metabolites are also known to be informative markers of physiological status. While metabolomics is increasingly used to investigate the endogenous biochemistry of organisms, no non-targeted studies of the metabolic complexity of fish exometabolomes have been reported to date. In environmental chemistry, Chemcatcher® (Portsmouth, UK) passive samplers have been developed to sample for micro-pollutants in water. Given the importance of the fish exometabolome, we sought to evaluate the capability of Chemcatcher® samplers to capture a broad spectrum of endogenous metabolites excreted by fish and to measure these using non-targeted direct infusion mass spectrometry metabolomics. The capabilities of C18 and styrene divinylbenzene reversed-phase sulfonated (SDB-RPS) Empore™ disks for capturing non-polar and polar metabolites, respectively, were compared. Furthermore, we investigated real, complex metabolite mixtures excreted from two model fish species, rainbow trout (Oncorhynchus mykiss) and three-spined stickleback (Gasterosteus aculeatus). In total, 344 biological samples and 28 QC samples were analysed, revealing 646 and 215 m/z peaks from trout and stickleback, respectively. The measured exometabolomes were principally affected by the type of Empore™ (Hemel Hempstead, UK) disk and also by the sampling time. Many peaks were putatively annotated, including several bile acids (e.g., chenodeoxycholate, taurocholate, glycocholate, glycolithocholate, glycochenodeoxycholate, glycodeoxycholate). Collectively these observations show the ability of Chemcatcher® passive samplers to capture endogenous metabolites excreted from fish.

4.
Aquat Toxicol ; 168: 78-89, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26453812

ABSTRACT

Pharmaceuticals are increasingly being used in human and veterinary medicine, and their presence in the aquatic environment may present a threat to non-target aquatic organisms. The selective serotonin reuptake inhibitor fluoxetine (Prozac) has been reported to affect diverse behaviours (feeding, aggression, and reproduction) and also the endocrine system (steroid biosynthesis pathway) in fish. To investigate these claims further, and in particular effects on androgen synthesis, male three-spined sticklebacks (Gasterosteus aculeatus) were exposed to fluoxetine at 0, 3.2, 10 and 32µg/L in a flow-through system for 21 days. Their sex was determined prior to exposure using a non-invasive method to collect DNA for determining the genetic sex, reported here for the first time. This was necessary as the exposure required males of a non-breeding status which had not developed secondary characteristics. Post exposure a number of biochemical (serotonin, steroid and spiggin levels) and apical (aggressive behaviour) endpoints were measured. No effects were detected on morphometric parameters, spiggin or androgen (11-ketotestosterone) levels. However, all fluoxetine-exposed male fish had higher cortisol levels in comparison to the control fish, although this effect only persisted throughout the whole exposure duration at the highest concentration (32µg/L). In addition, the ratio of 5-HIAA/5-HT (serotonin metabolite/serotonin) was significantly lower in the brains of males exposed to fluoxetine at all concentrations tested. Although we found no differences in the number of nests built by the males, the quality of the nests produced by the fluoxetine-exposed males was generally inferior consisting only of a basic, rudimentary structure. Males exposed to 32µg/L of fluoxetine displayed a delayed response to a simulated threat (rival male via own mirror image) and were less aggressive (number of bites and attacks) toward their mirror image, but these differences were not statistically significant. In summary, fluoxetine exposure resulted in reduced serotonergic activity in the male three-spined stickleback brain suggesting that the mechanism of action between humans and fish is at least partially conserved. Furthermore, this study provided additional evidence of cross-talk between the serotonergic and stress axes as demonstrated by the perturbations in cortisol levels. This potentially complex interaction at brain level may be responsible for the effects observed on nest quality, an endpoint with serious ecological consequences for this species. Finally, despite our hypothesis (an effect on steroid biosynthesis, based on limited literature evidence), we observed no effects of fluoxetine exposure (at the concentrations and duration employed) on male stickleback androgen levels.


Subject(s)
Aggression/drug effects , Behavior, Animal/drug effects , Fluoxetine/toxicity , Smegmamorpha/physiology , Animals , Breeding , Fish Proteins/genetics , Fish Proteins/metabolism , Hydrocortisone/blood , Male , Reproduction/drug effects , Testosterone/analogs & derivatives , Testosterone/genetics , Testosterone/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL