Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 143(10): 933-937, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38194681

ABSTRACT

ABSTRACT: T-ALL relapse usually occurs early but can occur much later, which has been suggested to represent a de novo leukemia. However, we conclusively demonstrate late relapse can evolve from a pre-leukemic subclone harbouring a non-coding mutation that evades initial chemotherapy.


Subject(s)
Leukemia-Lymphoma, Adult T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Mutation , Recurrence , Chronic Disease , Clone Cells
2.
Hum Mutat ; 43(6): 800-811, 2022 06.
Article in English | MEDLINE | ID: mdl-35181971

ABSTRACT

Despite recent progress in the understanding of the genetic etiologies of rare diseases (RDs), a significant number remain intractable to diagnostic and discovery efforts. Broad data collection and sharing of information among RD researchers is therefore critical. In 2018, the Care4Rare Canada Consortium launched the project C4R-SOLVE, a subaim of which was to collect, harmonize, and share both retrospective and prospective Canadian clinical and multiomic data. Here, we introduce Genomics4RD, an integrated web-accessible platform to share Canadian phenotypic and multiomic data between researchers, both within Canada and internationally, for the purpose of discovering the mechanisms that cause RDs. Genomics4RD has been designed to standardize data collection and processing, and to help users systematically collect, prioritize, and visualize participant information. Data storage, authorization, and access procedures have been developed in collaboration with policy experts and stakeholders to ensure the trusted and secure access of data by external researchers. The breadth and standardization of data offered by Genomics4RD allows researchers to compare candidate disease genes and variants between participants (i.e., matchmaking) for discovery purposes, while facilitating the development of computational approaches for multiomic data analyses and enabling clinical translation efforts for new genetic technologies in the future.


Subject(s)
Rare Diseases , Canada , Genetic Association Studies , Humans , Phenotype , Prospective Studies , Rare Diseases/diagnosis , Rare Diseases/genetics , Retrospective Studies
3.
Nucleic Acids Res ; 48(W1): W372-W379, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32479601

ABSTRACT

CReSCENT: CanceR Single Cell ExpressioN Toolkit (https://crescent.cloud), is an intuitive and scalable web portal incorporating a containerized pipeline execution engine for standardized analysis of single-cell RNA sequencing (scRNA-seq) data. While scRNA-seq data for tumour specimens are readily generated, subsequent analysis requires high-performance computing infrastructure and user expertise to build analysis pipelines and tailor interpretation for cancer biology. CReSCENT uses public data sets and preconfigured pipelines that are accessible to computational biology non-experts and are user-editable to allow optimization, comparison, and reanalysis for specific experiments. Users can also upload their own scRNA-seq data for analysis and results can be kept private or shared with other users.


Subject(s)
Neoplasms/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Software , Humans , Neoplasms/immunology , T-Lymphocytes/metabolism
4.
Sci Rep ; 14(1): 22626, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349521

ABSTRACT

The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.


Subject(s)
Gene Editing , Genes, Essential , Mice, Knockout , Animals , Mice , Gene Editing/methods , CRISPR-Cas Systems , Alleles , Mice, Inbred C57BL , Male , Female , Genetic Engineering/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL