Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 18(10): e0292126, 2023.
Article in English | MEDLINE | ID: mdl-37796856

ABSTRACT

Deep generative models, such as variational autoencoders (VAE), have gained increasing attention in computational biology due to their ability to capture complex data manifolds which subsequently can be used to achieve better performance in downstream tasks, such as cancer type prediction or subtyping of cancer. However, these models are difficult to train due to the large number of hyperparameters that need to be tuned. To get a better understanding of the importance of the different hyperparameters, we examined six different VAE models when trained on TCGA transcriptomics data and evaluated on the downstream tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect of the latent space dimensionality, learning rate, optimizer, initialization and activation function on the quality of subsequent downstream tasks on the TCGA samples. We found ß-TCVAE and DIP-VAE to have a good performance, on average, despite being more sensitive to hyperparameters selection. Based on these experiments, we derived recommendations for selecting the different hyperparameters settings. To ensure generalization, we tested all hyperparameter configurations on the GTEx dataset. We found a significant correlation (ρ = 0.7) between the hyperparameter effects on clustering performance in the TCGA and GTEx datasets. This highlights the robustness and generalizability of our recommendations. In addition, we examined whether the learned latent spaces capture biologically relevant information. Hereto, we measured the correlation and mutual information of the different representations with various data characteristics such as gender, age, days to metastasis, immune infiltration, and mutation signatures. We found that for all models the latent factors, in general, do not uniquely correlate with one of the data characteristics nor capture separable information in the latent factors even for models specifically designed for disentanglement.


Subject(s)
Benchmarking , Neoplasms , Humans , Transcriptome , Neoplasms/genetics , Gene Expression Profiling , Cluster Analysis
2.
Bioinform Adv ; 2(1): vbac011, 2022.
Article in English | MEDLINE | ID: mdl-36699396

ABSTRACT

Motivation: Single-cell multi-omics assays simultaneously measure different molecular features from the same cell. A key question is how to benefit from the complementary data available and perform cross-modal clustering of cells. Results: We propose Single-Cell Multi-omics Clustering (scMoC), an approach to identify cell clusters from data with comeasurements of scRNA-seq and scATAC-seq from the same cell. We overcome the high sparsity of the scATAC-seq data by using an imputation strategy that exploits the less-sparse scRNA-seq data available from the same cell. Subsequently, scMoC identifies clusters of cells by merging clusterings derived from both data domains individually. We tested scMoC on datasets generated using different protocols with variable data sparsity levels. We show that scMoC (i) is able to generate informative scATAC-seq data due to its RNA-guided imputation strategy and (ii) results in integrated clusters based on both RNA and ATAC information that are biologically meaningful either from the RNA or from the ATAC perspective. Availability and implementation: The data used in this manuscript is publicly available, and we refer to the original manuscript for their description and availability. For convience sci-CAR data is available at NCBI GEO under the accession number of GSE117089. SNARE-seq data is available at NCBI GEO under the accession number of GSE126074. The 10X multiome data is available at the following link https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-3-k-1-standard-2-0-0. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELECTION OF CITATIONS
SEARCH DETAIL