Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
Cell Biol Toxicol ; 37(4): 573-593, 2021 08.
Article in English | MEDLINE | ID: mdl-33205376

ABSTRACT

Zinc oxide particles were synthesized in various sizes and shapes, i.e., spheres of 40-nm, 200-nm, and 500-nm diameter and rods of 40∙100 nm2 and 100∙400 nm2 (all PVP-stabilized and well dispersed in water and cell culture medium). Crystallographically, the particles consisted of the hexagonal wurtzite phase with a primary crystallite size of 20 to 100 nm. The particles showed a slow dissolution in water and cell culture medium (both neutral; about 10% after 5 days) but dissolved within about 1 h in two different simulated lysosomal media (pH 4.5 to 4.8). Cells relevant for respiratory exposure (NR8383 rat alveolar macrophages) were exposed to these particles in vitro. Viability, apoptosis, and cell activation (generation of reactive oxygen species, ROS, release of cytokines) were investigated in an in vitro lung cell model with respect to the migration of inflammatory cells. All particle types were rapidly taken up by the cells, leading to an increased intracellular zinc ion concentration. The nanoparticles were more cytotoxic than the microparticles and comparable with dissolved zinc acetate. All particles induced cell apoptosis, unlike dissolved zinc acetate, indicating a particle-related mechanism. Microparticles induced a stronger formation of reactive oxygen species than smaller particles probably due to higher sedimentation (cell-to-particle contact) of microparticles in contrast to nanoparticles. The effect of particle types on the cytokine release was weak and mainly resulted in a decrease as shown by a protein microarray. In the particle-induced cell migration assay (PICMA), all particles had a lower effect than dissolved zinc acetate. In conclusion, the biological effects of zinc oxide particles in the sub-toxic range are caused by zinc ions after intracellular dissolution, by cell-to-particle contacts, and by the uptake of zinc oxide particles into cells. Graphical headlights • The cytotoxicity of zinc oxide particles is mainly due to the intracellular release of zinc ions. • The size and shape of zinc oxide micro- and nanoparticles has only small effects on lung cells in the sub-toxic range. • Zinc oxide particles are rapidly taken up by cells, regardless of their size and shape. • Zinc oxide particles rapidly dissolve after cellular uptake in endolysosomes.


Subject(s)
Nanoparticles , Zinc Oxide , Animals , Macrophages, Alveolar , Nanoparticles/toxicity , Particle Size , Rats , Reactive Oxygen Species , Zinc Oxide/toxicity
2.
Gene Ther ; 24(5): 282-289, 2017 05.
Article in English | MEDLINE | ID: mdl-28218744

ABSTRACT

The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.


Subject(s)
Gene Silencing , Nanoparticles/adverse effects , Transfection/methods , Calcium Phosphates/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Lipids/adverse effects , Microscopy, Fluorescence/methods , Mitosis , Nanoparticles/chemistry , Transfection/standards
3.
Eur Cell Mater ; 34: 162-179, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28980278

ABSTRACT

The aim of the present study was to evaluate the effect of different dosages of retarded vs. rapid release of bone morphogenic protein 2 (BMP2) at different recipient sites. Porous composite poly(D,L-lactic acid) (PDLLA)/CaCO3 scaffolds were loaded with three different dosages of rhBMP2 (24 µg, 48 µg and 96 µg) and implanted, together with blank controls, both into non-healing defects of the mandibles and into the gluteal muscles of 24 adult male Wistar rats. After 26 weeks, bone formation and expression of bone specific markers [alkaline phosphatase (AP) and Runx2] were evaluated by histomorphometry and immunohistochemistry. Results showed that the mode of delivery had no quantitative effect on bone formation in mandibular sites. Expression of AP and Runx2 showed significant differences among the three dosage groups. There were significant correlations between the expression of both AP and Runx2 as well as the extent of bone formation, with both retarded and rapid release of rhBMP2. In ectopic sites, retarded release significantly enhanced bone formation in the low and medium dosage groups, compared to rapid release. Expression of AP was significantly higher and Runx2 significantly lower in ectopic sites, compared to mandibular sites. Significant correlations between the expression of bone specific markers and bone formation occurred only in the retarded delivery groups, but not in the rapid release groups. Within the limitations of the experimental model, it was concluded that retarded delivery of BMP2 was effective, preferably in sites with low or non-existing pristine osteogenic activity. Expression of bone specific markers indicated that osteogenic pathways might be different in mandibular vs. ectopic sites.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Facial Bones/drug effects , Mandible/drug effects , Osteogenesis/drug effects , Transforming Growth Factor beta/pharmacology , Alkaline Phosphatase/metabolism , Animals , Bone and Bones/drug effects , Bone and Bones/metabolism , Calcium Carbonate/chemistry , Core Binding Factor Alpha 1 Subunit/metabolism , Facial Bones/pathology , Male , Mandible/pathology , Polyesters/chemistry , Porosity , Rats, Wistar , Recombinant Proteins/pharmacology , Time Factors , Tissue Scaffolds/chemistry , Treatment Outcome
4.
Acta Biomater ; 164: 577-587, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37019167

ABSTRACT

Cytotoxicity and cellular uptake of spherical barium sulphate microparticles (diameter 1 µm) were studied with three different cell lines, i.e. THP-1 cells (monocytes; model for a phagocytosing cell line), HeLa cells (epithelial cells; model for a non-phagocytosing cell line), and human mesenchymal stem cells (hMSCs; model for non-phagocytosing primary cells). Barium sulphate is a chemically and biologically inert solid which allows to distinguish two different processes, e.g. the particle uptake and potential adverse biological reactions. Barium sulphate microparticles were surface-coated by carboxymethylcellulose (CMC) which gave the particles a negative charge. Fluorescence was added by conjugating 6-aminofluorescein to CMC. The cytotoxicity of these microparticles was studied by the MTT test and a live/dead assay. The uptake was visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The particle uptake mechanism was quantified by flow cytometry with different endocytosis inhibitors in THP-1 and HeLa cells. The microparticles were easily taken up by all cell types, mostly by phagocytosis and micropinocytosis, within a few hours. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is of primary importance in nanomedicine, drug delivery, and nanotoxicology. It is commonly assumed that cells take up only nanoparticles unless they are able to phagocytosis. Here, we demonstrate with chemically and biologically inert microparticles of barium sulphate that even non-phagocytosing cells like HeLa and hMSCs take up microparticles to a considerable degree. This has considerable implication in biomaterials science, e.g. in case of abrasive debris and particulate degradation products from implants like endoprostheses.


Subject(s)
Barium Sulfate , Phagocytosis , Humans , HeLa Cells , Barium Sulfate/pharmacology , Barium Sulfate/metabolism , Endocytosis , Macrophages/metabolism , Particle Size
5.
Acta Biomater ; 159: 156-172, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36708852

ABSTRACT

Hard dental tissue pathologies, such as caries, are conventionally managed through replacement by tooth-colored inert biomaterials. Tissue engineering provides novel treatment approaches to regenerate lost dental tissues based on bioactive materials and/or signaling molecules. While regeneration in the form of reparative dentin (osteo-dentin) is feasible, the recapitulation of the tubular microstructure of ortho-dentin and its special features is sidelined. This study characterized in vitro, and in vivo human EDTA-treated, freeze-dried dentin matrices (HTFD scaffolds) conditioned with calcium phosphate nanoparticles (NPs) bearing plasmids encoding dentinogenesis-inducing factors (pBMP2/NPs or pDMP1/NPs). The uptake and transfection efficiency of the synthesized NPs on dental pulp stem cells (DPSCs) increased in a concentration- and time-dependent manner, as evaluated qualitatively by confocal laser microscopy and transmission electron microscopy, and quantitatively by flow cytometry, while, in parallel, cell viability decreased. HTFD scaffolds conditioned with the optimal transfectability-to-viability concentration at 4 µg Ca/mL of each of the pBMP2/NPs or pDMP1/NPs preserved high levels of cell viability, evidenced by live/dead staining in vitro and caused no adverse reactions after implantation on C57BL6 mice in vivo. HTFD/NPs constructs induced rapid and pronounced odontogenic shift of the DPSCs, as evidenced by relevant gene expression patterns of RunX2, ALP, BGLAP, BMP-2, DMP-1, DSPP by real-time PCR, and acquirement of polarized meta-mitotic phenotype with cellular protrusions entering the dentinal tubules as visualized by scanning electron microscopy. Taken together, HTFD/NPs constitute a promising tool for customized reconstruction of the ortho-dentin/odontoblastic layer barrier and preservation of pulp vitality. STATEMENT OF SIGNIFICANCE: In clinical dentistry, the most common therapeutic approach for the reconstruction of hard dental tissue defects is the replacement by resin-based restorative materials. Even modern bioactive materials focus on reparative dentinogenesis, leading to amorphous dentin-bridge formation in proximity to the pulp. Therefore, the natural microarchitecture of tubular ortho-dentin is not recapitulated, and the sensory and defensive role of odontoblasts is sidelined. This study approaches the reconstruction at the dentin-pulp interface using a construct of human treated dentin (HTFD) scaffold and plasmid-carrying nanoparticles (NPs) encoding dentinogenic factors (DMP-1 or BMP-2) with excellent in vitro and in vivo properties. As a future perspective, the HTFD/NPs constructs could act as bio-fillings for personalized reconstruction of the dentin-pulp interface.


Subject(s)
Nanoparticles , Tissue Engineering , Humans , Animals , Mice , Tissue Scaffolds/chemistry , Cell Differentiation , Cells, Cultured , Stem Cells/metabolism , Mice, Inbred C57BL , DNA/metabolism , Calcium Phosphates/metabolism , Dentin , Plasmids , Dental Pulp , Bone Morphogenetic Protein 2/metabolism
6.
Klin Monbl Augenheilkd ; 229(6): 603-7, 2012 Jun.
Article in German | MEDLINE | ID: mdl-22752982

ABSTRACT

The term "gene therapy" denotes the treatment of diseases or gene deficiencies by introduction of genes into cells. To achieve this goal, vectors are used to transfer the genetic information into the cells. Thus, the protein of interest can be overexpressed or silenced. On account of its easy accessibility, the good compartmentalisation and the separation from the main bloodstream by the blood-retina barrier, the eye represents a very attractive target to treat ocular diseases by gene therapy. In this work, we provide an overview of the progress in ocular gene therapy over the last decade and give an outlook on future developments.


Subject(s)
Genetic Therapy/trends , Iridocorneal Endothelial Syndrome/genetics , Iridocorneal Endothelial Syndrome/therapy , Transfection/trends , Humans
7.
Acta Biomater ; 140: 586-600, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34968725

ABSTRACT

The usage of antigen-functionalized nanoparticles has become a major focus in the field of experimental HIV-1 vaccine research during the last decade. Various molecular mechanisms to couple native-like trimers of the HIV-1 envelope protein (Env) onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this study, a short amino acid sequence ("aldehyde-tag") was introduced at the C-terminus of a conformationally stabilized native-like Env. The post-translational conversion of a tag-associated cysteine to formylglycine creates a site-specific aldehyde group without alteration of the Env antigenicity. This aldehyde group was further utilized for bioconjugation of Env trimers. We demonstrated that the low acidic environment necessary for this bioconjugation is not affecting the trimer conformation. Furthermore, we developed a two-step coupling method for pH-sensitive nanoparticles. To this end, we conjugated aldehyde-tagged Env with Propargyl-PEG3-aminooxy linker (oxime ligation; Step-one) and coupled these conjugates by copper-catalyzed azide-alkyne cycloaddition (Click reaction; Step-two) to calcium phosphate nanoparticles (CaPs) functionalized with terminal azide groups. CaPs displaying orthogonally arranged Env trimers on their surface (o-CaPs) were superior in activation of Env-specific B-cells (in vitro) and induction of Env-specific antibody responses (in vivo) compared to CaPs with Env trimers coupled in a randomly oriented manner. Taken together, we present a reliable method for the site-specific, covalent coupling of HIV-1 Env native-like trimers to the surface of nanoparticle delivery systems. This method can be broadly applied for functionalization of nanoparticle platforms with conformationally stabilized candidate antigens for both vaccination and diagnostic approaches. STATEMENT OF SIGNIFICANCE: During the last decade antigen-functionalized nanoparticles have become a major focus in the field of experimental HIV-1 vaccines. Rational design led to the production of conformationally stabilized HIV-1 envelope protein (Env) trimers - the only target for the humoral immune system. Various molecular mechanisms to couple Env trimers onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this paper, we describe a highly selective bio-conjugation of Env trimers to the surface of medically relevant calcium phosphate nanoparticles. This method maintains the native-like protein conformation and has a broad potential application in functionalization of nanoparticle platforms with stabilized candidate antigens (including stabilized spike proteins of coronaviruses) for both vaccination and diagnostic approaches.


Subject(s)
HIV-1 , Nanoparticles , Aldehydes , Calcium Phosphates , Glycoproteins , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
8.
Opt Lett ; 36(2): 229-31, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21263509

ABSTRACT

Large-area high-spatial-frequency patterns (HSFLs) of λ/6 periodicity have been generated by a nanojoule-femtosecond laser scanning technique (80 MHz, 170 fs, 700-950 nm) at the silicon-air interface. The excellent large-area uniformity allowed reproducible and accurate measurements of the periodicity. Variation of experimental parameters as illumination geometry, and pulse energy and number showed no influence on the ripple spacing. A wavelength dependence was observed and compared to current models of HSFL formation. A particular second-harmonic model was found to match the results best but needs to take into account transient changes in the refractive index under laser exposure. A second-harmonic mechanism is further supported by direct spectroscopic observation.


Subject(s)
Lasers , Silicon , Air , Feasibility Studies , Surface Properties , Time Factors
9.
J Mater Sci Mater Med ; 21(3): 887-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19924519

ABSTRACT

The charge of nanoparticles influences their ability to pass through the cellular membrane, and a positive charge should be beneficial. The negative charge of calcium phosphate nanoparticles with an inner shell of carboxymethyl cellulose (CMC) was reversed by adding an outer shell of poly(ethyleneimine) (PEI) into which the photoactive dye 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin (mTHPP) was loaded. The aqueous dispersion of the nanoparticles was used for photodynamic therapy with HT29 cells (human colon adenocarcinoma cells), HIG-82 cells (rabbit synoviocytes), and J774A.1 cells (murine macrophages). A high photodynamic activity (killing) together with a very low dark toxicity was observed for HIG-82 and for J774.1 cells at 2 microM dye concentration. The killing efficiency was equivalent to the pure photoactive dye that, however, needs to be administered in alcoholic solution.


Subject(s)
Calcium Phosphates/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Photochemotherapy/methods , Polymers/chemistry , Animals , Cations , Cell Line, Tumor , Coloring Agents/chemistry , Humans , Macrophages/metabolism , Mice , Polyethyleneimine/chemistry , Propiophenones/chemistry , Rabbits
10.
J Mater Sci Mater Med ; 21(4): 1233-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20119644

ABSTRACT

Thin calcium phosphate coatings were deposited on NiTi substrates (plates) by rf-magnetron sputtering. The release of nickel upon immersion in water or in saline solution (0.9% NaCl in water) was measured by atomic absorption spectroscopy (AAS) for 42 days. The coating was analyzed before and after immersion by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). After an initial burst during the first 7 days that was observed for all samples, the rate of nickel release decreased 0.4-0.5 ng cm(-2) d(-1) for a 0.5 mum-thick calcium phosphate coating (deposited at 290 W). This was much less than the release from uncoated NiTi (3.4-4.4 ng cm(-2) d(-1)). Notably, the nickel release rate was not significantly different in pure water and in aqueous saline solution.


Subject(s)
Calcium Phosphates/chemistry , Coated Materials, Biocompatible/pharmacokinetics , Electroplating/methods , Nickel/pharmacokinetics , Titanium/pharmacokinetics , Calcium Phosphates/pharmacology , Coated Materials, Biocompatible/chemistry , Electroplating/instrumentation , Materials Testing , Microscopy, Electron, Scanning , Nickel/chemistry , Particle Size , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Spectrometry, X-Ray Emission , Surface Properties/drug effects , Titanium/chemistry , Water/chemistry , Water/metabolism , Water/pharmacology , X-Ray Diffraction
11.
Langenbecks Arch Surg ; 394(3): 495-502, 2009 May.
Article in English | MEDLINE | ID: mdl-19280220

ABSTRACT

PURPOSE: Silver nanoparticles (Ag-NPs) are widely used in different areas, e.g., in the food, electronic, or clothing industry due to well-known slow-release antiseptic activities. Despite the widespread use of nanosilver, there is a serious lack of information concerning the biological activities of nanosilver on human tissue cells. MATERIALS AND METHODS: In this study, the influence of spherical Ag-NPs (diameter about 100 nm) on the biological functions (proliferation, cytokine release, and chemotaxis) of human mesenchymal stem cells (hMSCs) was analyzed. RESULTS: The results showed a concentration-dependent activation of hMSCs at nanosilver levels of 2.5 microg mL(-1), and cytotoxic cell reactions occurred at Ag-NPs concentrations above 5 microg mL(-1). Cell proliferation and the chemotaxis of hMSC both decreased with increasing Ag-NPs concentrations. Different effects on the cytokine release from hMSCs were observed in the presence of Ag-NPs and Ag(+) ions. The release of IL-8 was significantly increased at high but noncytotoxic concentrations of Ag-NPs (2.5 microg mL(-1)). In contrast, the levels of IL-6 and VEGF were concomitantly decreased compared to the control group. The synthesis of IL-11 was not affected at different Ag-NP concentrations. The agglomeration tendency of Ag-NPs in different biological media increased with a high electrolyte content, e.g., in RPMI. However, complexation with fetal calf serum in the cell culture media stabilized the Ag-NPs against agglomeration. CONCLUSION: In summary, the results showed that Ag-NPs exert cytotoxic effects on hMSCs at high concentrations but also induce cell activation (as analyzed by the release of IL-8) at high but nontoxic concentrations of nanosilver.


Subject(s)
Mesenchymal Stem Cells/drug effects , Nanoparticles/chemistry , Silver/chemistry , Cell Proliferation , Chemotaxis , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-11/biosynthesis , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Mesenchymal Stem Cells/metabolism , Silver/pharmacology , Statistics, Nonparametric
12.
RSC Adv ; 9(46): 26628-26636, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-35528588

ABSTRACT

A comparative X-ray powder diffraction study on poly(N-vinyl pyrrolidone) (PVP)-stabilized palladium and gold nanoparticles and bimetallic Pd-Au nanoparticles (both types of core-shell nanostructures) was performed. The average diameter of Au and Pd nanoparticles was 5 to 6 nm. The two types of core-shell particles had a core diameter of 5 to 6 nm and an overall diameter of 7 to 8 nm, i.e. a shell thickness of 1 to 2 nm. X-ray powder diffraction on a laboratory instrument was able to distinguish between a physical mixture of gold and palladium nanoparticles and bimetallic core-shell nanoparticles. It was also possible to separate the core from the shell in both kinds of bimetallic core-shell nanoparticles due to the different domain size and because it was known which metal was in the core and which was in the shell. The spherical particles were synthesized by reduction with glucose in aqueous media. After purification by multiple centrifugation steps, the particles were characterized with respect to their structural, colloid-chemical, and spectroscopic properties, i.e. particle size, morphology, and internal elemental distribution. Dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), atomic absorption spectroscopy (AAS), ultraviolet-visible spectroscopy (UV-vis), high-angle annular dark field imaging (HAADF), and energy-dispersed X-ray spectroscopy (EDX) were applied for particle characterization.

13.
Mater Sci Eng C Mater Biol Appl ; 99: 357-366, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889709

ABSTRACT

Silver nanoparticles loaded fibrillar collagen-chitosan matrix (CC) was prepared by biomimetic approach by blending silver nanoparticles (tAgNPs), collagen fibril and chitosan hydrogel followed by cross-linking and biomineralization. Electron micrograph showed that the surface of the composites exhibited native fibrillar morphology of collagen and their cross-section revealed layer-like arrangement of native fibrillar collagen. The mineralized composites exhibited surface mineralization of calcium phosphates incorporated with magnesium. FT-IR ATR analysis revealed the uniform blending of collagen and chitosan without any chemical interaction between them. XRD analysis showed incorporation of silver nanoparticles and lamellar structure of collagen and chitosan. The mechanical property of the dry composite film showed increase in tensile strength with the addition of chitosan and raised to 4.6 fold in M-CC4 composite. The incorporation of chitosan in M-CC3 led to 2.2 fold increase in mineralization as confirmed by the TGA analysis. Contact angle analysis revealed the hydrophilic nature of the composite. Hemolysis analysis of the composites verified the hemocompatible nature of composites with hemolysis < 5%. MTT assay for the composites was carried by seeding MG-63 cells and indicated cell viability > 80%. Antibacterial activity analysis showed the percent growth inhibition of about 27% and 37% for S. aureus and E. coli respectively. The prepared composite would possess silver nanoparticles loaded collagen fibril in the native state and the formed biomineral will be similar to the bone mineral. Hence the fabricated composite -could be used as a biomaterial for bone tissue engineering applications.


Subject(s)
Biomimetics/methods , Chitosan/pharmacology , Fibrillar Collagens/pharmacology , Minerals/chemistry , Silver/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colony Count, Microbial , Escherichia coli/drug effects , Goats , Hemolysis/drug effects , Humans , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Thermogravimetry , X-Ray Diffraction
14.
Cell Mol Bioeng ; 12(1): 41-51, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31719898

ABSTRACT

INTRODUCTION: Landomycins are a subgroup of angucycline antibiotics that are produced by Streptomyces bacteria and possess strong antineoplastic potential. Literature data suggest that enhancement of the therapeutic activity of this drug may be achieved by means of creating specific drug delivery systems. Here we propose to adopt C60 fullerene as flexible and stable nanocarrier for landomycin delivery into tumor cells. METHODS: The methods of molecular modelling, dynamic light scattering and Fourier transform infrared spectroscopy were used to study the assembly of C60 fullerene and the anticancer drug Landomycin A (LA) in aqueous solution. Cytotoxic activity of this nanocomplex was studied in vitro towards two cancer cell lines in comparison to human mesenchymal stem cells (hMSCs) using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test and a live/dead assay. The morphology of the cells incubated with fullerene-drug nanoparticles and their uptake into target cells were studied by scanning electron microscopy and fluorescence light microscopy. RESULTS: The viability of primary cells (hMSCs, as a model for healthy cells) and cancer cell lines (human osteosarcoma cells, MG-63, and mouse mammary cells, 4T1, as models for cancer cells) was studied after incubation with water-soluble C60 fullerenes, LA and the mixture C60 + LA. The C60 + LA nanocomplex in contrast to LA alone showed higher toxicity towards cancer cells and lower toxicity towards normal cells, whereas the water-soluble C60 fullerenes at the same concentration were not toxic for the cells. CONCLUSIONS: The obtained physico-chemical data indicate a complexation between the two compounds, leading to the formation of a C60 + LA nanocomposite. It was concluded that immobilization of LA on C60 fullerene enhances selectivity of action of this anticancer drug in vitro, indicating on possibility of further preclinical studies of novel C60 + LA nanocomposites on animal tumor models.

15.
ACS Appl Mater Interfaces ; 11(21): 19522-19533, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31058486

ABSTRACT

Elaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[( R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate- co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (∼15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions. The modification of the wettability for PHB and PHBV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (µCT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue.


Subject(s)
Bone and Bones/physiology , Calcium Carbonate/pharmacology , Hydroxybutyrates/pharmacology , Minerals/pharmacology , Osteoblasts/cytology , Polyesters/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Ultrasonics , Animals , Body Fluids/metabolism , Bone and Bones/drug effects , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Humans , Mice , Optical Imaging , Prohibitins , Surface Properties , X-Ray Microtomography
16.
Acta Biomater ; 80: 352-363, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30240952

ABSTRACT

Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i.e. we can separate the particle uptake effect from potential biological reactions. The colloidal stabilization of the nanoparticles was achieved by a layer of carboxymethylcellulose (CMC) which is biologically inert and gives the particles a negative zeta potential (i.e. charge). The particles were made fluorescent by conjugating 6-aminofluoresceine to CMC. Their uptake was visualized by flow cytometry, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and correlative light and electron microscopy (CLEM). Barium sulphate particles of all sizes were readily taken up by dendritic cells and even more by macrophages, with the uptake increasing with time and particle concentration. They were mainly localized inside phagosomes, heterophagosomes, and in the case of nanoparticles also in the nearby cytosol. No particles were found in the nucleus. In nanomedicine, inorganic nanoparticles from the nanometer to the micrometer size are therefore well suited as transporters of biomolecules, including antigens, into dendritic cells and macrophages. The presented model system may also serve to describe the aseptic loosening of endoprostheses caused by abrasive wear of inert particles and the subsequent cell reaction, a question which relates to the field of nanotoxicology. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is at the heart of nanomedicine and nanotoxicology, including abrasive wear from endoprostheses. It also comprises the immunological reaction to different kinds of nanomaterials, triggered by an immune response, e.g. by antigen-presenting cells. However, it is often difficult to separate the particle effect from a chemical or biochemical reaction to particles or their cargo. We show how chemically inert barium sulphate particles with three different sizes (nano, sub-micro, and micro) interact with relevant immune cells (primary dendritic cells and macrophages). Particles of all three sizes are readily taken up into both cell types by phagocytosis, but the uptake by macrophages is significantly more prominent than that by dendritic cells. The cells take up particles until they are virtually stuffed, but without direct adverse effect. The uptake increases with time and particle concentration. Thus, we have an ideal model system to follow particles into and inside cells without the side effect of a chemical particle effect, e.g. by degradation or ion release.


Subject(s)
Barium Sulfate/metabolism , Bone Marrow Cells/cytology , Endocytosis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Phagocytosis , Animals , Bone Marrow Cells/metabolism , Fluorescence , Mice , Nanoparticles/ultrastructure , Spectrometry, X-Ray Emission
17.
J Biomed Mater Res A ; 82(3): 731-9, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17326228

ABSTRACT

The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.


Subject(s)
Nickel/analysis , Orthodontic Wires/standards , Titanium/chemistry , Mechanics , Nickel/chemistry , Nitrogen/chemistry , Spectrophotometry, Atomic , Surface Properties
18.
Phys Med Biol ; 62(1): N1-N17, 2017 01 07.
Article in English | MEDLINE | ID: mdl-27973355

ABSTRACT

Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Theoretical , Tomography, X-Ray Computed , Algorithms , Calibration , Monte Carlo Method , Photons
19.
Mater Sci Eng C Mater Biol Appl ; 78: 878-885, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28576062

ABSTRACT

Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy (1H and 13C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat.


Subject(s)
Gallstones/chemistry , Bilirubin , Humans , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , X-Ray Diffraction
20.
Mater Sci Eng C Mater Biol Appl ; 59: 398-403, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652389

ABSTRACT

With an aim to elucidate the effects of C60 fullerene complexed with antibiotic doxorubicin (Dox) on model bilipid membranes (BLM), the investigation of the electrical properties of BLM under the action of Dox and C60 fullerene, and of their complex, C60+Dox,was performed. The complex as well as its components exert a clearly detectable influence on BLM, which is concentration-dependent and also depends on phospholipid composition. The mechanism of this effect originates either from intermolecular interaction of the drug with fatty-acid residues of phospholipids, or from membranotropic effects of the drug-induced lipid peroxidation, or from the sum of these two effects. By fluorescence microscopy the entering of C60 + Dox complex into HeLa cells was directly shown.


Subject(s)
Doxorubicin , Drug Carriers , Fullerenes , Lipid Bilayers , Lipid Peroxidation/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Fullerenes/chemistry , Fullerenes/pharmacokinetics , Fullerenes/pharmacology , HeLa Cells , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/pharmacokinetics , Lipid Bilayers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL