Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 13(1): 4736, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35961984

ABSTRACT

The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.


Subject(s)
Receptors, Lysosphingolipid , Sphingosine , Humans , Immune System , Lysophospholipids/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
2.
Nat Commun ; 10(1): 5573, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811124

ABSTRACT

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Subject(s)
Mutation , Receptors, Leukotriene/chemistry , Receptors, Leukotriene/genetics , Animals , Asthma/genetics , Asthma/metabolism , Computer Simulation , Crystallography, X-Ray , HEK293 Cells , Humans , Leukotriene D4/metabolism , Ligands , Models, Molecular , Molecular Docking Simulation , Mutagenesis , Protein Conformation , Protein Engineering , Receptors, Leukotriene/drug effects , Sf9 Cells
SELECTION OF CITATIONS
SEARCH DETAIL