Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Lett ; 49(13): 3794-3797, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950270

ABSTRACT

Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes. Tight optical sectioning helps to minimize out-of-focus fluorescence for high-contrast imaging in these densely labeled tissues but has been challenging to achieve in OTLS systems due to trade-offs between optical sectioning and field of view. Here we present an OTLS microscope with voice-coil-based axial sweeping to circumvent this trade-off, achieving 2 µm axial resolution over a 750 × 375 µm field of view. We implement our design in a non-orthogonal dual-objective (NODO) architecture, which enables a 10-mm working distance with minimal sensitivity to refractive index mismatches, for high-contrast 3D imaging of clinical specimens.


Subject(s)
Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Humans , Microscopy/methods , Staining and Labeling , Light
2.
Mod Pathol ; 36(12): 100322, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37657711

ABSTRACT

Early detection of esophageal neoplasia via evaluation of endoscopic surveillance biopsies is the key to maximizing survival for patients with Barrett's esophagus, but it is hampered by the sampling limitations of conventional slide-based histopathology. Comprehensive evaluation of whole biopsies with 3-dimensional (3D) pathology may improve early detection of malignancies, but large 3D pathology data sets are tedious for pathologists to analyze. Here, we present a deep learning-based method to automatically identify the most critical 2-dimensional (2D) image sections within 3D pathology data sets for pathologists to review. Our method first generates a 3D heatmap of neoplastic risk for each biopsy, then classifies all 2D image sections within the 3D data set in order of neoplastic risk. In a clinical validation study, we diagnose esophageal biopsies with artificial intelligence-triaged 3D pathology (3 images per biopsy) vs standard slide-based histopathology (16 images per biopsy) and show that our method improves detection sensitivity while reducing pathologist workloads.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Humans , Pathologists , Artificial Intelligence , Workload , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Barrett Esophagus/diagnosis , Barrett Esophagus/pathology , Biopsy/methods
3.
Nat Protoc ; 19(4): 1122-1148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263522

ABSTRACT

Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. Although 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol focuses on the use of a fluorescent analog of hematoxylin and eosin, which remains the most common stain used for gold-standard pathological reports. We present our guidelines for a broad range of end users (e.g., biologists, clinical researchers and engineers) in a simple format. The end-to-end workflow requires 3-6 d to complete, bearing in mind that data analysis may take longer.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Imaging, Three-Dimensional/methods , Workflow , Microscopy/methods , Coloring Agents , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL